Statistical Mechanics, Physics 715

Mid-term exam, due October 26, 2009

Problem 1. Evaluate the load that a helium balloon can carry at elavation 5000 ft , if it can reach 12000 ft without the load. Assume that it has a cylindrical shape with radius 20 ft and hight is 5 ft . You can make reasonable assumptions about the atmosphere or use handbook/online information about it.

Problem 2. In general, the free energy of a three dimensional Boltzmann gas in volume V is given by the following equation

$$
\begin{equation*}
F=-N T \ln \left[\frac{e V}{N} \int e^{-\varepsilon(\boldsymbol{p}) / T} \frac{d \boldsymbol{p}}{(2 \pi \hbar)^{3}}\right] . \tag{1}
\end{equation*}
$$

Find the temperature dependence of the free energy of a Boltzmann gas with kinetic energy of particles $\varepsilon(\boldsymbol{p})=c|\boldsymbol{p}|^{4}$. What are the entropy, internal energy, heat capacity and equation of state of this gas?

Problem 3. Calculate the anharmonic correction to the vibrational heat capacity at temperature $T \gtrsim \hbar \omega_{0}$ of an ideal gas with a single vibrational degree of freedom described by an one-dimensional Hamiltonian $H=p^{2} / 2 m+m \omega_{0}^{2} x^{2} / 2+\alpha x^{4} / \lambda_{q}^{4}$, where $\lambda_{q}=\sqrt{\hbar / m \omega_{0}}$ and $\alpha \ll 1$. What is the limit of applicability of your calculations.

