Statistical Mechanics, Physics 715 Homework Assignment 4, due December 7, 2009

Problem 1. Calculate the paramagnetic and diamagnetic susceptibilities of an ideal three dimensional electron gas at high temperatures $T \gg E_{\rm F}$, where $E_{\rm F}$ is the Fermi energy.

Problem 2. Consider a system of N classical magnetic moments μ with vector μ constrained to a two-dimensional plane. In the presence of in-plane magnetic field H, the energy of the system is

$$E = -\mu H \sum_{i=1}^{N} \cos \phi_i,$$

where ϕ_i is the angle between H and μ . Find the induced magnetic moment and magnetic susceptibility. At high temperatures the susceptibility has the Curie's law $\chi = \alpha/T$. Evaluate the value of α .

Hint:

$$\int_0^{2\pi} \exp(x\cos\theta) d\theta = 2\pi I_0(x),$$

where $I_0(x)$ is the Bessel function and $I_0(x) \approx 1 + x^2/4$ for $|x| \ll 1$.

Problem 3. Problem 10.5 from Huang, 2nd edition.

Problem 4. A model of dilute magnetic impurities. A system of magnetic spin 1/2 impurities consists of non-interacting impurities with concentration n_1 and impurity pairs with concentration n_2 . The interaction between impurities in a pair is described by the Hamiltonian $\hat{H}_{pair} = J\hat{\vec{s}}_1 \cdot \hat{\vec{s}}_2$.

a) Calculate the heat capacity if J for all pairs are equal, consider both cases of J > 0 and J < 0.

b) Calculate magnetic moment of this system as a function of the applied magnetic field B.

c) Calculate the heat capacity and magnetic susceptibility of this system, if J for all pairs are equal in magnitude, but the sign of J is positive or negative with equal probability.

Problem 5. Problem 17.2 from K. Huang.

Problem 6. Spins taking three values $S_i = \pm 1, 0$ are placed on a square *d*-dimensional lattice. The Hamiltonian is

$$\mathcal{H} = J \sum_{\langle ij \rangle} S_i S_j - h \sum_i S_i,$$

where $\langle ij \rangle$ stands for nearest neighboring pairs.

(a) Write an equation for the average value of the magnetization in the mean field approximation.

- (b) Calculate the critical temperature in this approximation?
- (c) Describe the behavior of magnetization near the critical temperature?
- (d) Calculate heat capacity as a function of h and T.