Quantum Mechanics, Physics 531
 Midterm Exam 2, due April 20, 2009 at 1:20 pm

Problem 1. (20 points) Compute

$$
\left\langle\left(\Delta \hat{S}_{i}\right)^{2}\right\rangle=\left\langle\hat{S}_{i}^{2}\right\rangle-\left\langle\hat{S}_{i}\right\rangle^{2}
$$

for $i=x, y, z$ for a spin-up state of a spin $S=1 / 2$ particle. Using your result, check the generalized uncertainty relation

$$
\left\langle\Delta \hat{A}^{2}\right\rangle\left\langle\Delta \hat{B}^{2}\right\rangle \geq \frac{1}{4}|\langle[\hat{A}, \hat{B}]\rangle|^{2}
$$

for all three choices of pairs of the \hat{S}_{i} operators.
Problem 2. (20 points) The spin dependent Hamiltonian of an electron-positron pair in the presence of magnetic field along z direction can be written as

$$
\hat{H}=A \hat{\mathbf{S}}^{(e)} \hat{\mathbf{S}}^{(p)}+B\left(\hat{S}_{z}^{(e)}-\hat{S}_{z}^{(p)}\right)
$$

Suppose the spin function of the system is given by $\left|\uparrow_{e}\right\rangle \otimes\left|\downarrow_{p}\right\rangle$.
a) Is this an eigen function of the spin Hamiltonian \hat{H} for $A=0$? If it is, what is the eigen energy? If not, what is the expectation value of the spin Hamiltonian \hat{H} ?
b) Same problem when $B=0, A \neq 0$.

Problem 3. (30 points) Construct the matrix $\hat{L}_{\boldsymbol{n}}$ representing the projection of the angular momentum operator on direction $\boldsymbol{n}=\{\sin \theta \cos \varphi ; \sin \theta \sin \varphi ; \cos \theta\}$ in the basis of eigenstates of the angular momentum along z axis $(\theta=0)$ with total angular momentum $l=1$. Find the eigenvalues and the normalized eigenvectors.

Problem 4. (30 points) The electrostatic potential of a screened positive charge in a medium has the form

$$
V(r)=\frac{|e|}{4 \pi \epsilon \epsilon_{0}} \frac{e^{-r / r_{c}}}{r}
$$

where r_{c} is the screening radius. With a trial wave function $\psi(\boldsymbol{r})=\exp (-r / b) / \sqrt{\pi b^{3}}$, estimate the binding energy of an electron (with charge $-|e|$) by the positive charge. Show that the bound state exists for $r_{c} \gg a$, where a is the Bohr radius. Does the bound state always exist for arbitrary small values of the screening radius?

