Quantum Mechanics, Physics 531
 Homework Assignment 5, due April 13, 2009

Problem 1. Find the commutator $\hat{K}_{0}=\left[\hat{K}_{+} ; \hat{K}_{-}\right] / 2$ of the operators $\hat{K}_{ \pm}=\hat{a}_{ \pm} \hat{a}_{ \pm} / 2$, where the operators $\hat{a}_{ \pm}$are the raising and lowering operators of a harmonic oscillator, their commutator is $\left[\hat{a}_{-} ; \hat{a}_{+}\right]=1$.

Calculate the commutation relations $\left[\hat{K}_{ \pm} ; \hat{K}_{0}\right]$.
Problem 2. Problem 4.31.

Problem 3. Problem 4.49.
Problem 4. Problem 4.38.
Problem 5. Calculate energies E_{n} of stationary states of a two-dimensional particle moving in a potential

$$
U(\boldsymbol{r})=\frac{\hbar^{2}}{2 m}\left[\alpha^{2}|\boldsymbol{r}|^{2}+\frac{\beta^{2}}{|\boldsymbol{r}|^{2}}\right] .
$$

Use the cylindrical coordinates and look for the wave function in the form

$$
\psi_{n}(|\boldsymbol{r}|, \varphi)=e^{i m_{z} \varphi} e^{-\alpha|\boldsymbol{r}|^{2} / 2}|\boldsymbol{r}|^{\sqrt{\beta^{2}+m_{z}^{2}}} w(|\boldsymbol{r}|),
$$

where $w(|\boldsymbol{r}|)$ is a finite order polynomial, $w(0) \neq 0$. Explain the choice of the above equation for the wave function $\psi_{n}(|\boldsymbol{r}|, \varphi)$.

Problem 6. Problem 7.2.

Problem 7. Problem 7.7.

