Electronic Properties of Atomic Wires:

from Semiconductor Surfaces to Organic Chains and DNA
F. J. Himpsel

- One-dimensional phenomena
- Ultimate limit of nanowires, electronics
- Single chain of overlapping orbitals (channel)
- Fabrication of atomic/molecular wires

Combine spectroscopic methods

- Angle-resolved photoemission
- Two-photon photoemission
- Scanning tunneling spectroscopy
(Filled vs. empty states, real space vs. momentum space)

Physics in one dimension

- Elegant and simple
- Lowest dimension containing translational motion
- Electrons cannot avoid each other
- No such thing as an individual electron or hole
- Spinons and holons instead

Electrons cannot avoid each other in 1D

Delocalized electrons:
\Rightarrow Momentum space
Tomonaga-Luttinger model
b)

c)

Collective excitations in 1D

Strictly-speaking, one should consider only collective excitations in 1D, not single-electron energy bands. (I used to ask theorists how many electrons/atoms are involved but they tended to hedge.)

Spinons and holons are groups of electrons and holes which act like a spin without charge or a charge without spin.

Can this concept be tested? What identifies spinons vs. holons? Photons interact mainly with charge. Neutrons probe the bulk.

To get started, study known collective excitations \Rightarrow plasmons! Lichtenstein,...,Pfnür, PRB 97, 165421 (2018).
Sanna,...,Pfnür, JPCC 122, 25580 (2018).

Limits of electronics from information theory

Conductance/Channel: $\quad \mathbf{G}=\mathbf{2} \mathbf{e}^{\mathbf{2} / \boldsymbol{h} \cdot \mathbf{T} \quad \mathrm{T} \leq \mathbf{1}, ~}$

Energy to switch a bit: $\quad \mathrm{E}=\boldsymbol{k}_{\mathrm{B}} \mathbf{T} \cdot \ln \mathbf{2}$

Time to switch one bit: $\quad \mathbf{t}=\boldsymbol{h} / \mathbf{E}$

Energy to transport a bit: $\quad \mathrm{E}=\boldsymbol{k}_{\mathrm{B}} \mathbf{T} \cdot \mathrm{v} / \mathrm{c} \cdot \mathrm{d}$

Data storage
Magnetic is densest, but still needs 10^{6} Spins/Bit

Reading and writing single-atom magnetic bits

$\mathrm{MgO} / \mathrm{Ag}(100)$

Reading via tunneling magnetoresistance
Writing via current pulse at the Ho atom

Magnetic state of the Ho from ESR at the Fe

Natterer et al.,
Nature 543, 226 (2017).

Futuristic transistor, made of graphene ribbons

Figure 4. Molecular switches can be carved out of a single graphene sheer. Here, a fourbenzene quantum dot [center, white) is connected to graphene electrodes (blue) through narrow constrictions. A coplanar graphene side gate (red) controls charge flow through the circuit.

Geim and MacDonald, Physics Today, August 2007

Silicon ribbons instead?

Self-assembled atom chains on silicon

Conventional wisdom says that π-bonds form only in carbon.
Silicon surfaces break this rule to avoid broken bonds.

Si(111)5x2-Au, found in 1969

BRIT. J. APPL. PHYS. (J. PHYS. D), 1969, SER. 2, VOL. 2. PRINTED IN GREAT BRITAIN

Segregation of gold to the silicon (111) surface observed by Auger emission spectroscopy and by LEED

H. E. BISHOP and J. C. RIVIÈRE
Solid State Division, U.K.A.E.A. Research Group, Atomic Energy Research Establishment, Harwell

MS. received 21st July 1969

Abstract

A silicon crystal implanted with gold was heated to successively higher temperatures, reaching a maximum of $1250^{\circ} \mathrm{C}$, and its surface examined by Auger emission spectroscopy (AES) and LeED at each stage. No recrystallization was observed until the crystal had been heated to $740^{\circ} \mathrm{C}$, at which point the AES analysis could be interpreted in terms of the appearance of gold atoms at the surface. At $810^{\circ} \mathrm{C}$ the Auger peaks from gold were considerably larger than those from silicon, but decreased progressively thereafter as the temperature was raised until, at over $1000^{\circ} \mathrm{C}$, the differential distribution was indistinguishable from that of clean silicon. The first leed pattern observed, at $740^{\circ} \mathrm{C}$, was not the $\mathrm{Si}(111)-7$ pattern, but another familiar one, the $\mathrm{Si}(111)-(\sqrt{ } 3 \times \sqrt{ } 3)-\mathrm{R} 30^{\circ}$ pattern. With increasing temperature, the $\frac{1}{3} \mathrm{rd}$-order pattern spread over the whole surface and, above $900^{\circ} \mathrm{C}$, was joined by another, a $\frac{1}{5}$ th-order pattern, probably based on a domain structure. At the highest

$$
\text { a } 1 / 5^{\text {th }} \text {-order pattern }
$$

Si(111)5x2-Au, refined structure

The basic structure is 5×1 :
3 Au atom chains Graphitic Si ribbon
plus Si adatoms (dopants) plus extra Au atoms

Erwin et al., PRB 80, 155409 (2009).
Kwon, Kang, PRL 113, 086101 (2014).

Graphitic ribbon*

A simpler structure:

Si(557)-Au

Discovered by RHEED: Jalochowski et al., Surf. Sci. 375, 203 (1997)

Calculated structure: Sanchez-Portal et al., PRB 65, 081401 (2002)
Crain, Erwin, et al.,
PRB 69, 125401 (2004)
X-Ray diffraction:
Robinson et al.,
PRL 88, 096104 (2002)
*Collazo-Davila, Grozea, Marks, PRL 80, 1678 (1998). Erwin, Weitering, PRL 81, 2296 (1998).

What drives the surface 1D?

Perfect lattice match along the ribbon

Complete mismatch perpendicular to it

The ultimate nanowire

Single chain of

$\mathrm{Si}(111) 5 \times 2-\mathrm{Gd}$
Metal atoms that produce 1D chains on vicinal $\mathrm{Si}(111)$:

I: Li, Na,...
II: $\mathrm{Ca}, \mathrm{Ba}, \ldots$
III: In
IV: Pb
NM: Ag, Au
TM: Pt
RE: Gd, Dy,...
on $\mathrm{Si}(100)$:
III: Bi
TM: Ir
on $\operatorname{Ge}(100)$:
NM: Au
TM: Pt

$\mathrm{Si}(111) 3 \times 1-\mathrm{Ag}$

$\mathrm{Si}(557)-\mathrm{Au}$

Mapping electrons at surfaces

Angle-resolved photoemission measures all quantum numbers: E, k_{x}, k_{y}

Fermi surface: $\quad I\left(k_{y}, k_{x}\right)$
Band dispersion: I(E, \mathbf{k}_{x})

Phil Anderson: Photoemission data will provide the "smoking gun" for solving HiTc superconductivity.

Fermi surfaces between 2D and 1D

2D

Toward 1D

Band dispersions of atom chains

Single Chain

Si(557) -Au

Si(553) -Au

Three Chains

Si(111) -Au

$\mathrm{S}=$ Single Chain, $\mathrm{D}_{\mathrm{b}}=$ Double chain (bonding), $\mathrm{D}_{\mathrm{a}}=$ Double chain (antibonding), S. Erwin (unpublished)

What about the splitting?
Prediction: It is magnetic!

Crain et al., PRB 69, 125401 (2004).

Sanchez-Portal et al., PRL 93, 146803 (2004).

Evidence for a magnetic splitting

Spin-polarized, angle-resolved photoemission

Okuda et al. PRB 82, 161410(R) (2010).

Various spin splittings

Non-magnetic

Exchange Splitting
ΔE
vertical shift

Rashba Splitting
Δk
horizontal shift
"W" shape

Rashba (spin-orbit) Hamiltonian: $\mathrm{H} \propto(\overrightarrow{\mathrm{k}} \times \vec{\nabla} \mathrm{V}) \cdot \overrightarrow{\mathbf{s}}$

Evidence for Rashba splitting ($\Delta \mathbf{k}$)

Electron-like Rashba bands ("W ")

Hole-like Rashba bands (" M ")

Barke et al., PRL 97, 226405 (2006).

Spin-polarization of broken bonds?

3D: No
2D: No
1D: ??
OD: Yes Isolated broken bond electrons: \mathbf{P}_{b}-center at the $\mathrm{Si} / \mathrm{SiO}_{2}$ interface, observed by ESR

Look for isolated broken bonds

Focus on the step edge

Si edge atoms with an unpaired electron may become spin-polarized

Erwin, Himpsel, Nature

 Comm. 1:58 (2010).Aulbach et al., Nano Letters 16, 2698 (2016).

Magnetic band structure

Empty minority spin state characterizes polarized edge atoms

(absent for unpolarized edge atoms)

Biedermann et al., PRB 85, 245413 (2012).

Snijders, Erwin, et al., New Journal of Physics 14, 103004 (2012).

Scanning tunneling spectroscopy of edge states

The high density of states (arrow) is consistent with an empty minority spin state of polarized edge atoms. Needs to be tested by local ESR or spin-polarized STM.

1D superlattice at steps below 50K

Atoms?	Reconstruction	Braun ... PRB 98, 121402(R) (2018).
Charges?	Charge density wave	Shin ... PRB 85, 073401 (2012).
Spins?	Spin density wave	Aulbach ... PRL 111, 137203 (2013).
	All of the above?	Compare complex oxides.

Molecular wires from doped polymers

1977

$$
\begin{aligned}
& \sigma=38 \mathrm{~S} / \mathrm{cm}=38 \frac{1}{\Omega \mathrm{~cm}} \\
& \sigma=\text { Conductivity }
\end{aligned}
$$

Nobel Prize in Chemistry 2000 Shirakawa, McDiarmid, Heeger

Electrical measurements of individual molecular wires

DNA as (super)-conducting wire??

- Superconductivity induced by proximity to metallic contacts.
- The hydration shell and the counter-ions conduct.

Without them DNA would degrade.

- Pump-probe measurements find tunneling up to 2 base pairs and hopping of holes between adenine bases for longer DNA.

Giese et al., Nature 412, 318 (2001).
Takada et al., PNAS 101, 14002 (2004).
Endres, Cox, Singh, Rev. Mod. Phys. 76, 195 (2004).

Propagation of carriers along a molecular wire

Duvanel, Grilj, Vauthey, J. Phys. Chem. A 117, 918 (2013).

Spectroscopy of π-chains

A chain of overlapping π-orbitals forms a molecular wire

Lycopene (makes tomatoes red)

Beta Carotene

(makes carrots orange)

Garcia-Lastra et al., J. Phys. Chem. C 120, 12362 (2016)

Energy levels from absorption spectroscopy

Transitions from the C1s level into the lowest π^{*} (=LUMO)

Wave functions of molecular wires: vibrating strings

LUMO

LUMO+1

Garcia-Lastra et al., J. Phys. Chem. C 120, 12362 (2016)

- Atomic/molecular wires by self-assembly
- Single chain of overlapping orbitals (=channel)
- Alternating spins or charges at step edges

