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ABSTRACT

We present an analytical study of subproton electromagnetic fluctu
beta of the order of unity. In the linear limit, a rigorous derivation f
on the role and physical properties of kinetic-Alfvén and whistler
kinetic-Alfvén waves and whistler modes are derived, with specia
in the corresponding plasma dynamics. The kinetic-Alfvén mode
space, ω � k⊥vT i , where they are described by the kinetic-Alfv
above the ion-cyclotron frequency. The whistler modes, which are
modes, occupy a different region of phase space, k⊥vT i � ω �
magnetohydrodynamics (MHD) system or the reduced electron MH
and k⊥ are the wavenumbers along and transverse to the backgroun
are the ion and electron thermal velocities, respectively. The model
and the results of numerical simulations are presented. We also
observations.
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1. INTRODUCTION

The simplest description of plasma dynamics on large scales
(compared to microscales such as ion gyroradius, skin depth,
etc.) is provided by one-fluid magnetohydrodynamics (MHD).
In the presence of a background magnetic field, ideal MHD
possesses exact nonlinear solutions—Alfvén waves propagating
up and down along the magnetic field lines (e.g., Biskamp
2003; Kulsrud 2005). Interactions of counter-propagating waves
redistribute energy over scales and, when the dissipation is
not significant, give rise to a turbulent cascade by which
energy is transferred to progressively smaller scales. It has
been established that such an energy cascade is intrinsically
anisotropic, in that it predominantly supplies energy to the
modes with mostly field-perpendicular wavenumbers, k⊥ � k‖
(e.g., Shebalin et al. 1983; Goldreich & Sridhar 1995; Galtier
et al. 2000; Cho & Vishniac 2000; Boldyrev & Perez 2009;
Perez & Boldyrev 2010; Perez et al. 2012).

When the energy cascade reaches particle gyroscales, the
one-fluid approximation breaks down and the character of
the turbulence changes qualitatively. The resulting microscale
plasma turbulence plays a role in laboratory experiments with
strongly magnetized plasmas and it has been an important
ingredient in theories of plasma confinement and magnetic
reconnection (Biskamp et al. 1999; Cho & Lazarian 2004;
Gürcan et al. 2009; Chandran et al. 2010; Kletzing et al. 2010).
Recent high-resolution in situ observations of the solar wind
also revealed the presence of significant magnetic, density, and
electric fluctuations at subproton scales, often referred to as
dispersion or dissipation scales, indicating a greater importance
of subrange plasma dynamics in natural systems (Bale et al.
2005; Smith et al. 2006; Alexandrova et al. 2009, 2011; Kiyani
et al. 2009; Sahraoui et al. 2009; Chen et al. 2010, 2012a, 2012b,
2013b; Salem et al. 2012; Šafránková et al. 2013; Podesta 2013;
Kiyani et al. 2013). Studies of subproton turbulence shed light
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2007; Shaikh & Shukla 2009; Saito et al. 2010). The lower-
frequency kinetic-Alfvén modes have been discussed in kinetic,
gyrokinetic, and fluid frameworks (e.g., Hollweg 1999; Howes
et al. 2006; Gary & Smith 2009; Schekochihin et al. 2009;
Sahraoui et al. 2012).

The subproton whistler and kinetic-Alfvén modes have char-
acteristics in common as well as essential physical differences,
which should be taken into account in phenomenological mod-
els and in the interpretation of observational data. The goal of
the present work is to provide an analysis of subproton plasma
turbulence, specifically concentrating on the role of kinetic-
Alfvén and whistler modes. In both linear and nonlinear cases,
we employ unifying analytic approaches that allow us to treat
kinetic-Alfvén and whistler waves on the same footing and to
effectively compare their dynamics. As subproton electromag-
netic fluctuations are rarely covered in textbooks, we pay spe-
cial attention to methodical aspects of the work: where possible,
derivations are carried out rigorously and in detail and neces-
sary assumptions and simplifications are clearly explained. We
start with the derivation of the properties of the linear waves and
then proceed with the derivation of the corresponding nonlinear
equations and the analysis of the results of the numerical simu-
lations. Our work complements previous fluid dynamics studies,
gyrokinetic simulations, and known numerical solutions of the
linearized Vlasov–Maxwell equations.

In the first part of this work (Sections 2–5), we present a
rigorous derivation of subproton whistler and kinetic-Alfvén
waves starting from the collisionless kinetic equation. We
emphasize similarities and differences between these modes
by establishing the sectors of the phase space where they exist,
the role of the electrons and the ions in their dynamics and
in their dissipation, and by analyzing the associated density
fluctuations and electron and magnetic compressibilities. In the
second part of the paper (Sections 6–9), we extend the analysis
to the nonlinear kinetic-Alfvén and whistler dynamics. Starting
from the picture of electron drift motion, in Sections 6 and 7 we
derive in the equations for nonlinear kinetic-Alfvén waves in
the lower-frequency region. In the higher-frequency region, we
derive the equations for the whistler waves, that is, the electron
MHD (EMHD) equations. We demonstrate that in the limit of
strong background magnetic fields and oblique propagation, the
EMHD equations simplify to the reduced EMHD (REMHD)
equations; we compare and contrast the REMHD equations with
the kinetic-Alfvén equations. In Sections 8 and 9, we discuss
the phenomenological models of kinetic-Alfvén and whistler
turbulence and present the results of numerical simulations.
Finally, in Section 10, we summarize our results and discuss
their relation to some other recent studies of subproton plasma
turbulence.

2. METHODOLOGY

In this section, we define our notation and outline the method
that we use to analyze electromagnetic subproton plasma
fluctuations. We start with the collisionless kinetic equation for
the distribution function of particles of sort α:

∂

∂t
fα + v

∂

∂r
fα + qα

(
E +

1

c
[v × B]

)
∂

∂p
fα = 0. (1)

We then Fourier transform this equation in time and space
and assume that the system has a uniform magnetic field B0
applied in the z-direction. We furthermore assume that the
wave vector k is in the x−z plane, k = (k⊥, 0, kz). For

small perturbations, the particle distribution function can be
represented as fα = f0α + δfα , where f0α is a Maxwellian and
δf0α is a small perturbation. The kinetic equation (1) can then
be solved for the perturbation, which in cylindrical coordinates,
v = (v⊥ cos φ, v⊥ sin φ, vz), has the form (e.g., Aleksandrov
et al. 1984; Stix 1992)

δfα = iqα

Tα

f0α

+∞∑
n=−∞

exp
{ − inφ + i k⊥v⊥

Ωα
sin φ

}
ω − kzvz − nΩα

×
[

nΩα

k⊥
Jn

(
k⊥v⊥
Ωα

)
Ex + iv⊥J ′

n

(
k⊥v⊥
Ωα

)
Ey

+ vzJn

(
k⊥v⊥
Ωα

)
Ez

]
, (2)

where Jn is a Bessel function of the order of n. In this expression,
Ωα = qαB0/(mαc) is the gyrofrequency of the particles of sort
α, which can be either positive or negative depending on the
sign of the charge. Substituting Equation (2) into the Maxwell
equations, one derives the dielectric tensor εij (ω, k) in a plasma
with a uniform magnetic field, whose components are given by
(Aleksandrov et al. 1984)

εxx = 1 −
∑
α,n

n2ω2
pα

ω(ω − nΩα)

An(zα)

zα

J+(βnα), (3)

εyy = εxx + 2
∑
α,n

ω2
pαzα

ω(ω − nΩα)
A′

n(zα)J+(βnα), (4)

εxy = − εyx = −i
∑
α,n

nω2
pα

ω(ω − nΩα)
A′

n(zα)J+(βnα), (5)

εxz = εzx =
∑
α,n

nω2
pαk⊥

ωΩαkz

An(zα)

zα

[1 − J+(βnα)] , (6)

εyz = − εzy = −i
∑
α,n

ω2
pαk⊥

ωΩαkz

A′
n(zα) [1 − J+(βnα)] , (7)

εzz = 1 +
∑
α,n

ω2
pα(ω − nΩα)

ωk2
z v

2
T α

An(zα) [1 − J+(βnα)] . (8)

In these expressions, we used the short-hand notation

∑
α,n

≡
∑

α

+∞∑
n=−∞

(9)

and we denoted

zα = k2
⊥v2

T α

Ω2
α

, (10)

βnα = ω − nΩα

|kz|vT α

, (11)

An = e−zα In(zα), (12)

J+(x) = xe−x2/2
∫ x

i∞
eξ 2/2 dξ, (13)
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Figure 1. Asymptotic regions in ω − k⊥ space where the wave dispersion
relations can be found analytically. We assume that kz = θk⊥ where θ is
a constant, and that kzvT e � k⊥vT i . The regions where the kinetic-Alfvén
waves can exist are marked “KA”; the whistler waves can exist in the region
marked “W.”

(A color version of this figure is available in the online journal.)

with the limiting forms

J+(x) ≈ 1 +
1

x2
+ · · · − i

√
π

2
xe−x2/2, |x| � 1, (14)

J+(x) ≈ − i

√
π

2
x, |x| � 1. (15)

In what follows, we need to know the limiting forms of the
few first functions An for zα � 1, which are, to first order

A0 ≈ 1, A′
0 ≈ −1, (16)

A1 = A−1 ≈ zα/2. (17)

The following notation is adopted here and throughout the
paper: ωpα = √

4πn0αq2
α/mα is the plasma frequency and

vT α = √
Tα/mα is the thermal velocity associated with the

particles of sort α. For a plasma consisting of electrons and
ions, the so-called ion-acoustic velocity can be defined vs =√

Te/mi . It is also convenient to introduce the Alfvén speed
vA = B0/

√
4πn0mi and the plasma beta, which is the ratio of

the thermal energy of the particles to the magnetic energy of the
plasma. The plasma beta can be different for ions and electrons
if the plasma is non-isothermal, βi = 2v2

T i/v
2
A, βe = 2v2

s /v
2
A.

In the above expressions, In is a modified Bessel function of the
order of n and the function J+ is related to the plasma dispersion
function (it should not be confused with the Bessel function).

Our discussion is mostly motivated by astrophysical plasmas
(e.g., the solar wind at 1 AU, the warm interstellar medium),
where the thermal energies of particles and the magnetic field
energies can be on the same order, that is, the plasma beta
is of the order of 1: βα = 8πnαTα/B2 ∼ 1. Under this
assumption, the particle gyroscales and the inertial scales are on
the same order, that is, ρα = vT α/Ωα ∼ c/ωpα

. Regarding the
wavelengths under consideration, we are interested in subproton
but superelectron scales, that is, 1/ρi � k⊥ � 1/ρe. We also
restrict ourselves to the frequencies below the electron cyclotron
frequency, ω � Ωe.

Even within these assumptions, there are different regions
that should be considered separately. To identify these regions,

Figure 2. Asymptotic regions in ω − k⊥ space where the wave dispersion
relations can be found analytically. We assume that kz = θk⊥, where θ is a
constant, and that kzvT e � k⊥vT i . The regions where the kinetic-Alfvén waves
can exist are marked “KA.”

(A color version of this figure is available in the online journal.)

we first examine, in wavenumber space, the rays defined by
kz = θk⊥, where θ is some constant. Then, for each such ray, we
can divide the two-dimensional frequency–wavenumber space
ω − k⊥ into sectors that are separated by the lines ω = kzvT e,
ω = k⊥vT i , ω = Ωi , and k⊥ = 1/ρi . One can check that
all the possibilities for subproton oscillations are covered by
considering the regions numbered I–IV in Figures 1 and 2.

In each of these regions, the wave modes can be analytically
derived, if we stay sufficiently far from the boundaries. We
will call those regions asymptotic regions. We will show
that in asymptotic region I, the obtained dispersion relation
corresponds to the kinetic-Alfvén wave. In this region, the ions
are dynamically important; they are not spatially magnetized
and they quickly adjust to the fluctuating electric potential. In
Section 6, we demonstrate that the nonlinear dynamics in this
regime can be captured by a two-field kinetic-Alfvén model,
which can be used to describe the kinetic-Alfvén turbulence
discussed in Section 8.

The solution in asymptotic region II corresponds to the
whistler mode. The principal difference between region II and
region I is the dynamics of the ions. While in the low-frequency
region (region I), the ions move to adjust to the fluctuating
electric potential, in the high-frequency region (region II), the
ions are immobile and dynamically irrelevant. As a consequence
of quasi-neutrality, the whistler waves are then not associated
with plasma density fluctuations. The electron nature of waves
in region II allows one to derive the nonlinear equations for the
whistler waves, the so-called EMHD equations. In Section 7,
we derive the EMHD equations from the electron drift picture,
similar to the derivation of the kinetic-Alfvén model. We then
demonstrate how the EMHD equations are simplified in the
case of a strong background magnetic field and oblique wave
propagation, thus leading to the REMHD model. We then
compare and contrast this model with the kinetic-Alfvén model
derived in Section 6. In Section 9, we discuss both weak and
strong turbulence of whistlers. Finally, it can be shown that there
are no solutions in regions III and IV.

In order to find the linear perturbations (waves) that can
propagate in a plasma, one needs to solve the linear system
of equations

Dlm Em(ω, k) = 0, (18)
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where

Dlm ≡ k2δlm − klkm − ω2

c2
εlm(ω, k). (19)

E(ω, k) is the polarization of the electric field and summation
over repeated indices is assumed. In a general case, the solution
of this equation cannot be obtained analytically. However, the
analytic solutions can be found for the asymptotic regions I–IV
in Figures 1 and 2. These solutions are derived below.

3. KINETIC-ALFVÉN WAVES

Here, we consider the solution of Equation (18) in region I,
that is, we apply the assumptions ω � k⊥vT i and ω � kzvT e.
The general expressions (3)–(8) can be simplified in this limit
in the following way

εxx  1 +
ω2

pe

Ω2
e

+
ω2

pi

k2
⊥v2

T i

 ω2
pi

k2
⊥v2

T i

, (20)

εyy  1 +
ω2

pe

Ω2
e

 ω2
pe

Ω2
e

, (21)

εxy = − εyx  i
ω2

pe

ωΩe

, (22)

εxz = εzx = O

(
kzρi

ω2
pi

k2
⊥v2

T i

)
, (23)

εyz = − εzy  i
ω2

pek⊥
ωΩekz

, (24)

εzz  1 +
ω2

pe

k2
z v

2
T e

 ω2
pe

k2
z v

2
T e

. (25)

The derivation requires an explanation. While the electron
contribution is derived straightforwardly from Equations (3)–(8)
by keeping only the leading terms in these expressions, the ion
contribution is not as easy to derive from Equations (3)–(8) since
one needs to keep many similar terms in the series. For example,
in the electron contribution to εxx in Equation (3), one needs to
retain only the lowest-order terms n = ±1. In contrast, in the ion
contribution one needs to keep the terms up to n ∼ √

zi � 1,
as it follows from the asymptotic form of the modified Bessel
function In(z) for 1 � n ∼ √

z

In(z) ∼ eze−n2/(2z)

√
2πz

. (26)

See, e.g., Abramowitz & Stegun (1972, Chapter 9) and Olver
(1997). The summation over n in Equation (3) can be done with
the aid of the result

+∞∑
n=−∞

In(z) = ez, (27)

which leads to

ε(i)
xx = ω2

pi

k2
⊥v2

T i

. (28)

In this derivation, we also assumed that kz � k⊥, which can be
verified a posteriori (cf. the discussion following Equation (40)).
In a similar fashion, one can find the ion contributions to the
other components of the dielectric tensor, where, together with
Equation (27), one needs to use the formula

+∞∑
n=−∞

n2In(z) = zez (29)

and the asymptotic result

+∞∑
n=1

In(z)

n2
→ π2

6

ez

√
2πz

, z → ∞. (30)

The derivation of the ion contribution from the series in
Equations (3)–(8) is however not physically transparent and
it is not very convenient. A more efficient way is to note that
in the limit kz � k⊥, the dominant ion contribution comes
through the field-perpendicular components of the ion dielectric
tensor (Equations (20)–(22)). For those components, the limit
of large zi corresponds to the limit of small magnetic field,
in which case the ion contribution ε

(i)
lm to the dielectric tensor

εlm = δlm + ε
(e)
lm + ε

(i)
lm is the same as in the non-magnetized case.

Taking into account ω � kvT i and kz � k⊥, we have, to leading
order

ε
(i)
lm = klkm

k2
⊥

ω2
pi

k2
⊥v2

T i

. (31)

This expression for the ion contribution was used in the
derivation of Equations (20)–(22). We can now write the
expressions for the tensor Dlm in Equation (19)

Dxx  k2
z − ω2

c2

ω2
pi

k2
⊥v2

T i

, (32)

Dyy  k2  k2
⊥, (33)

Dxy = − Dyx  −i
ωω2

pe

Ωec2
, (34)

Dxz = Dzx  −k⊥kz, (35)

Dyz = − Dzy  −i
ω2

peωk⊥
Ωec2kz

, (36)

Dzz  k2
⊥ − ω2ω2

pe

k2
z v

2
T ec

2
. (37)

The dispersion equation (18) now allows us to write the
equation for the wave frequency, det(Dlm) ≡ Aω4 − Bω2 = 0,
where

A = ω2
piω

2
pe

c4v2
T ev

2
T ik

2
z

+
ω6

pe

Ω2
ec

6v2
T ek

2
z

+
ω4

peω
2
pi

c6v2
T iΩ2

ek
2
z

, (38)

B = k2
⊥ω2

pi

c2v2
T i

+
k2
⊥ω2

pe

c2v2
T e

, (39)
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with the solution

ω2 =
[

ω2
pi

v2
T i

+
ω2

pe

v2
T e

]
[

ω2
peω

2
pi

c2v2
T iv

2
T e

+
ω6

pe

Ω2
ec

4v2
T e

+
ω2

piω
4
pe

Ω2
ec

4v2
T i

]k2
z k

2
⊥. (40)

In the above expressions, we have approximated k ≈ k⊥; now,
we can explain this assumption. By substituting the obtained
frequency (Equation (40)) into the condition ω � kvT i , we
derive kzρi � 1, which, together with our main assumption
k⊥ρi � 1, ensures that the wave propagation must be oblique.
This dispersion relation can be re-written in a more familiar form
by assuming singly charged ions (ni = ne) and by introducing
the ion-acoustic scale ρs = vs/Ωi , where v2

s = Te/mi is the
ion-acoustic speed

ω2 =
v2

Aρ2
s

(
1 + Ti

Te

)
1 + v2

s

v2
A

(
1 + Ti

Te

)k2
z k

2
⊥. (41)

This expression is the dispersion relation for the kinetic-Alfvén
waves (e.g., Camargo et al. 1996; Terry et al. 2001; Howes et al.
2006; Schekochihin et al. 2009).

For completeness, we present the polarization of the electric
field, which can be found from Equation (18)

Ez = −Te

Ti

kz

k⊥
Ex, (42)

Ey = i

√√√√√
(

1 + Te

Ti

)
v2

T i

v2
A

1 + v2
T i

v2
A

(
1 + Te

Ti

) (
1 +

Te

Ti

) |kz|
k⊥

Ex. (43)

For large angles of propagation, kz � k⊥, the x-component
of the electric field dominates over the other two components,
implying that the electric field is almost potential (e.g., Howes
et al. 2006; Schekochihin et al. 2009; Sahraoui et al. 2012). We
note, however, that from Equation (42) the small Ez component
is not given by the potential part of the electric field (in which
case we would have Ez/kz = Ex/k⊥); rather, it has compa-
rable contributions from both the potential and the solenoidal
parts. Kinetic-Alfvén waves are essentially electromagnetic, not
electrostatic, waves.

We also see that the oblique kinetic-Alfvén waves are
right-hand polarized, that is, their electric field rotates around
the ẑ axis similarly to the electrons. This situation is in contrast
with the kinetic-Alfvén waves propagating along the guide field,
which are left-hand polarized. This phenomenon, observed nu-
merically by Gary (1986), explains why oblique kinetic-Alfvén
waves do not resonate with the ions and why they can exist both
below and above the ion-cyclotron frequency.

Once the polarization of the electric field is obtained, the
magnetic field polarization can be straightforwardly found from
the induction equation, bk = (c/ω)[k × Ek]. In particular,
we obtain the following expression for the amplitude of the
magnetic fluctuations in kinetic-Alfvén waves

b2
k = c2Ω2

i

v2
Av2

T i

[
2
v2

T i

v2
A

(
1 +

Te

Ti

)2

+

(
1 +

Te

Ti

)]
E2

x

k2
⊥

. (44)

The result (Equations (42) and (43)) also allows one to analyze
the electron and ion-density perturbations in the kinetic-Alfvén

wave. For that, we integrate δfe in Equation (2) over velocity
and obtain

δne = i
n0e

Tekz

Ez, (45)

where e is the modulus of the electron charge. We see that
it is the z-component of the electric field that couples to the
electron density, reflecting the fact that the electron motion is
non-magnetized along the direction of the magnetic field.

Further insight into the physics of density fluctuations is
gained if we use Equation (42) to express the electron-density
perturbations through the field-perpendicular component of the
electric field, Ex, which is almost potential

δne = −i
n0e

Tik⊥
Ex = −n0qi

Ti

φk. (46)

Noting that the electron and ion perturbations are the same
due to quasi-neutrality, δni = δne, we observe that the ion-
density perturbations follow the electric potential. This fact is
not surprising if one notes that, as we discussed above, the ions
are spatially non-magnetized and, therefore, their low-frequency
response can be obtained from the non-magnetic collisionless
kinetic equation, which leads to the result

δni

n0
= −qiφk

Ti

[
1 − J+

(
ω

kvT i

)]
≈ −qiφk

Ti

, (47)

where φk = ik · E/k2 describes the potential part of the electric
field and the asymptotic form of the function J+ is given in
Equation (15). This expression is the same as Equation (46).

It may seem puzzling that the ions and the electrons follow
different potentials, φk and φ′

k = iEz/kz, respectively. The
explanation is that the electrons are moving with a velocity
ve that can be found from the integral neve = ∫

vδfed
3v and

the magnetic field lines are advected by the same velocity. The
electrons thus follow the potential φ′ existing in the moving
frame, to which they quickly adjust along the magnetic field
lines. The ions, on the other hand, are not spatially magnetized
and they adjust to the “laboratory-frame” potential φ, which is
different from φ′, since the electric field is different in different
frames.

This effect reveals important differences in the electron and
ion motion, which we now study in more detail. The short-cut
method for calculating the electron velocity is to use the electron
conductivity tensor, which is expressed through the electron part
of the dielectric tensor

σ
(e)
lm = ω

4πi
ε

(e)
lm ≡ − c2

4πiω
Dlm − ω

4πi
ε

(i)
lm

+
c2

4πiω

(
k2δlm − klkm − ω2

c2
δlm

)
, (48)

where Dlm is given by Equation (18) and ε
(i)
lm is given by

Equation (31). The electron velocity is related to the electron
current density,

Je,l = −en0ve,l = σ
(e)
lm Em, (49)

which is easy to calculate from Equation (48) since the wave
electric field satisfies DlmEm = 0. As a result, we obtain the

5
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following equations for the electron velocity field

ve,x = c
Ey

B0
, (50)

ve,y = − c
Ex

B0
− c

Te

Ti

Ex

B0
, (51)

ve,z = − ic

4πn0e
k⊥by. (52)

This result has the following physical interpretation. The
electron-fluid velocity across the magnetic field is just the “E
× B” drift plus the diamagnetic drift due to the gradient of the
(isothermal) electron pressure, pe = neTe. This fact implies that
the magnetic field lines are “frozen” into the electron fluid. The
electron velocity along the magnetic field lines is related to the
total parallel current Jz = (ic/4π )[k × b]z, since, as can be
verified from Equation (48), the ion contribution to the parallel
current is negligible.

The ion velocity field can be similarly calculated from the ion
part of the conductivity tensor,

Ji,l = ω

4πi
ε

(i)
lmEm = ωω2

pi

4πik4
⊥v2

T i

(k · E)kl, (53)

which implies that the ions, being spatially non-magnetized,
adjust to the electric potential. It can be demonstrated that
Equation (53) can also be obtained from the continuity equation
for the ions, where the ion density is expressed through the
electric potential according to Equation (47). The ions have
significant velocity (comparable to that of the electrons) only in
the x-direction, while their velocities in the y- and z-directions
can be neglected compared with the corresponding electron
velocities.

The obtained expressions also demonstrate that in the electron
co-moving frame, the electric field becomes purely potential
with the potential φ′. The electron and ion behavior that we
observed in the linear case will be preserved in the case of
strong kinetic-Alfvén turbulence. We will return to the fluid-
like picture when we discuss the nonlinear equations for the
kinetic-Alfvén waves in Section 6.

For practical applications, it may be useful to know the so-
called electron compressibility, that is, the ratio of the normal-
ized electron-density fluctuations to the normalized magnetic
fluctuations (e.g., Gary & Smith 2009). From Equations (44),
(46), and (42), we obtain

Cka
e ≡ (δne/n0)2

(b/B0)2
= 1

2 v4
T i

v4
A

(
1 + Te

Ti

)2
+ v2

T i

v2
A

(
1 + Te

Ti

) . (54)

We note that this ratio is independent of wavenumber and that it
strongly depends on the plasma beta βi = 2v2

T i/v
2
A. In a similar

fashion, one can obtain the so-called magnetic compressibility,
that is, the ratio of the z-component of the magnetic fluctuations
to the total amplitude of the fluctuations (e.g., Gary & Smith
2009). By evaluating bz from the induction equation and using
Equation (44), we obtain

Cka
‖ ≡ b2

z

b2
=

v2
T i

v2
A

(
1 + Te

Ti

)
1 + 2 v2

T i

v2
A

(
1 + Te

Ti

) . (55)

The magnetic compressibility is also independent of the
wavenumber and it strongly depends on the plasma beta.

We point out that the ions are dynamically important in
kinetic-Alfvén waves, which distinguishes the physics of the
kinetic-Alfvén modes from the physics of the whistler modes
where the ions are immobile and dynamically irrelevant. The
whistler mode is discussed in the next section.

4. WHISTLER WAVES

We now consider the asymptotic region II defined by kvT i �
ω � kzvT e. In this case, the electron contribution to the
dielectric function is the same as in region I and it can be inferred
from Equations (20)–(25). The ion contribution is however
different, since the ions can now be treated as “cold.” The ion
contribution is given by

ε
(i)
lm = −δlm

ω2
pi

ω2
. (56)

Keeping the dominant terms in the tensor Dlm, we obtain

Dxx  k2
z +

ω2
pi

c2
, (57)

Dyy  k2, (58)

Dxy = − Dyx  −i
ωω2

pe

Ωec2
, (59)

Dxz = Dzx  −k⊥kz, (60)

Dyz = − Dzy  −i
ω2

peωk⊥
Ωec2kz

, (61)

Dzz  k2
⊥ − ω2ω2

pe

k2
z v

2
T ec

2
. (62)

It is worth noting here that the only difference between the
wave equations in the whistler and kinetic-Alfvén cases is the
ion contributions in the Dxx terms in Equations (32) and (57).

The equation for the wave frequency follows from
Equation (18) and it has a biquadratic form: det(Dlm) ≡
Aω4 − Bω2 + C = 0, where

A = ω6
pe

Ω2
ec

6k2
z v

2
T e

, (63)

B = ω2
pek

2

v2
T ec

2
+

k2ω2
piω

2
pe

k2
z v

2
T ec

4
+

k2
⊥ω4

peω
2
pi

k2
z Ω2

ec
6

, (64)

C = ω2
pik

2
⊥k2

c2
. (65)

It can be checked that only one solution of this equation can
be consistent with the assumption kvT i � ω. For that, one has
to require that kzρi � 1, which implies that for the considered
plasma parameters, the whistlers cannot be too oblique. In this

6
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case, the first term in Equation (64) dominates over the other
two terms, C can be neglected, and a solution is found:

ω2 = Ω2
ec

4

ω4
pe

k2
z k

2 = v4
Aρ2

s

v2
s

k2
z k

2. (66)

This relation is the dispersion relation for the subproton whistler
waves.3,4

The polarization of the electric field can be found from
Equation (18) in this approximation

Ey = i
|kz|
k

Ex, (67)

Ez = 0. (68)

This result, together with the fact that the electron-density
fluctuations couple to the Ez-component of the electric field (see
Equation (45)), implies that density fluctuations are negligible
in whistler waves. This fact can be demonstrated directly from
the non-magnetized collisionless kinetic equation for the ions
(due to quasi-neutrality, ne = ni),

δne

n0
= δni

n0
= −qiφk

Ti

[
1 − J+

(
ω

kvT i

)]
, (69)

where φk = ik · E/k2 describes the potential part of the
electric field. For high-frequency fluctuations, kvT i/ω � 1,
the asymptotics of the J+ function are given by Equation (14),
which shows that the density variations are indeed negligibly
small, ∣∣∣∣δne

n0

∣∣∣∣ = qiφk

Ti

k2v2
T i

ω2
� qiφk

Ti

. (70)

In particular, one can compare the density fluctuations to
the magnetic fluctuations by calculating the electron compress-
ibility, similarly to our discussion in Equation (54). From the
magnetic induction equation and the electric field polarization
(Equations (67) and (68)), we obtain the magnetic field fluctua-
tions in the whistler wave,

b2 = 2c2

ω2
k2
zE

2
x, (71)

and the electron compressibility for the whistler wave is found
to be

Cw
e ≡ (δne/n0)2

(b/B0)2
= 1

2

ω4
pi

k4
z c

4
. (72)

Therefore, the whistler electron compressibility is small, as
whistlers exist only for kz > 1/ρi ∼ ωpi/c. Our analytic
result explains the behavior previously observed numerically by
Gary & Smith (2009); moreover, it turns out that Equation (72)
formally derived in the asymptotic limit (ωpi/(kzc) � 1) holds
quite well already for ωpi/(kzc) � 1.

3 It is interesting to note that the same dispersion relation also holds for the
case of cold electrons, that is, ω � kzvT e , (e.g., Aleksandrov et al. 1984). This
situation, however, requires the plasma beta to be small, βe � 1; this limit is
not considered here.
4 The other solution is the ion-acoustic mode ω2 = k2

⊥v2
s , which is not

allowed by the condition kvT i � ω � kzvT e , unless Te � Ti . The limit of
strongly non-isothermal plasma is, however, not considered in this work.

In addition, the properties of the whistler waves can
be characterized by the magnetic compressibility, which is
defined as

Cw
‖ ≡ b2

z

b2
= k2

⊥
2k2

. (73)

The whistler magnetic compressibility is independent of the
plasma beta, and it is practically independent of wavenumber
for kz � k⊥.

The obtained results reveal essential differences between the
kinetic-Alfvén modes and the whistler modes. The kinetic-
Alfvén modes are compressible modes where the ion dynamics
play an essential role. For the considered plasma parameters,
they exist at the subproton scales in the frequency range
ω � kvT i, kzvT e (depicted as region I in Figures 1 and 2) and in
the wavenumber range kzρi � 1. In contrast, the whistler waves
are electron waves, where the ion dynamics are not essential. The
ions provide a uniform stationary background, which, together
with the quasi-neutrality condition, explains the incompressible
character of whistler waves. We note that it is the high frequency
of the whistler waves, not the large plasma beta, that ensures
the immobility of the ions and the resulting incompressibility of
the whistler modes. For the considered plasma parameters, the
whistler waves exist at subproton scales in the frequency range
kvT i � ω � kzvT e (depicted as region II in Figure 1) and in
the wavenumber range kzρi � 1.

Therefore, the kinetic-Alfvén modes and the whistler modes
correspond to different frequency and wavenumber ranges and
they are governed by different physical mechanisms. This
fact is reflected in, e.g., the different normalizations of the
dispersion relations, (cf. Equations (41) and (66)) and the
different variation of electron and magnetic compressibilities
with plasma parameters (cf. Equations (54) and (55) with
Equations (72) and (73)). Finally, it can be checked that under
the considered plasma parameters, there are no wave modes in
regions III and IV.

5. COLLISIONLESS DISSIPATION OF KINETIC-ALFVÉN
AND WHISTLER WAVES

So far, we considered the subproton plasma fluctuations
under the assumption that dissipation can be neglected. In this
section, we evaluate the damping of subproton fluctuations
due to weak collisionless dissipation. The terms responsible
for the dissipation in the dielectric tensor (Equations (3)–(8))
arise from the small imaginary parts of the function J+ in
Equations (14) and (15), which should now be retained together
with the real parts. As a result, the components of the dielectric
tensor will acquire small corrections, εlm = ε0

lm + δεlm, and
the corresponding small corrections will appear in the tensor
Dlm = D0

lm +δDlm, where δDlm = −ω2

c2 δεlm and the superscript
0 denotes the components where the dissipation parts are
neglected.

The solution of the new dispersion equation det(Dlm) = 0 will
now take the form ω = ω0 + iγ , where ω0 is the frequency of a
non-dissipative wave, and γ is the small dissipation rate. Owing
to the smallness of δεlm and γ , the dispersion equation can be
re-written in a simplified form. Let us denote D = det(Dlm) and
Mlm as the cofactor corresponding to the matrix element Dlm.
We then have

δD = M0
lmδDlm(ω0) +

∂D0

∂ω0
iγ = 0, (74)

7
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where we used the identity ∂D/∂Dlm = Mlm and summation
over repeated indices is assumed. We therefore derive the
general expression for the dissipation rate

γ = i
M0

lmδDlm(ω0)

(∂D0/∂ω0)
. (75)

Further simplification comes from the observation that in both
the kinetic-Alfvén case and the whistler case, the determinant
has a simple general form,

det
(
D0

lm

) = Aω4
0 − Bω2

0, (76)

which leads to ∂D0/∂ω0 = 2Bω0. The coefficient B for the
kinetic-Alfvén case is found in Equation (39); for the whistler
case, B is found in Equation (64).

We now consider the dissipation separately for the kinetic-
Alfvén waves and the whistler waves. In the case of βi ∼ 1,
the dissipation of oblique kinetic-Alfvén waves is dominated
by the electron contribution, see, e.g., the numerical solutions
of the Vlasov–Maxwell equations in Howes et al. (2008a). We
will therefore consider only electron dissipation in this case.
In contrast, in the case of the whistler waves, ion dissipation
becomes significant and it may quickly overcome the electron
dissipation as the obliquity increases. In the whistler case,
we therefore derive both electron and ion contributions to the
dissipation.

In the kinetic-Alfvén case, the dominant dissipation terms in
the tensor Dlm are

δD(e)
yy = − i

√
2π

ωω2
pek

2
⊥vT e

c2Ω2
e |kz| , (77)

δD(e)
yz = − δD(e)

zy =
√

π

2

ω2ω2
pek⊥

ΩevT ec2|kz|kz

, (78)

δD(e)
zz = − i

√
π

2

ω3ω

v3
T ec

2|
A straightforward but somewhat leng
Equation (75) then gives

γ

ω0
= −F

(e)
kawk⊥ρe,

where

F
(e)
kaw =

√
π

2

√
(1 + a)(2

×
[

1 + a +
βi(2 + β

where we denoted a = Te/Ti . Formu
scribe the collisionless damping of the sub
waves; they agree with previous findin
2006, 2008b). For the case of βi = 1 an
F

(e)
kaw ≈ 1.1.
We now turn to the discussion of co

whistler waves. The dissipative contribu
will now be given by both the electrons an
contribution is given by the same express
kinetic-Alfvén case. The ion contributio

dielectric tensor for non-magnetized ions. Taking into account
that whistlers exist in the region ω � kvT i , we obtain

δD(i)
xx = − i

[
1 +

k2
⊥

k2

]
G, (82)

δD(i)
yy = − iG, (83)

δD(i)
xz = δD(i)

zx = −i
kzk⊥
k2

G, (84)

δD(i)
zz = − i

[
1 +

k2
z

k2

]
G, (85)

where we have denoted

G =
√

π

2

ω3

kvT ic2

ω2
pi

k2v2
T i

exp

(
− ω2

2k2v2
T i

)
. (86)

A straightforward computation taking into account both electron
and ion contributions leads to the dissipation rate of the
subproton whistler waves:

γ

ω0
= −

√
π

2

k⊥
k

k⊥ρe − 2
√

π |kz|c
βi

3/2ωpi

exp

(
− k2

z c
2

βiω
2
pi

)
. (87)

We see that the electron dissipation of the whistler waves (the
first term in Equation (87)) is comparable to that of the kinetic-
Alfvén waves, while the ion contribution to the dissipation (the
second term in Equation (87)) may become significantly larger
when the propagation is oblique. For example, for βi = 1, the
ion dissipation rate is about 1.6% for kzc/ωpi = 2.5 and it
reaches 14% for kzc/ωpi = 2. Thus, the ion dissipation rate
increases quickly as kzc/ωpi decreases so that the whistlers
become strongly damped by the ions at kzc/ωpi � 2.

From Equation (87), it follows that the electron damping

2

9)

g

of whistlers limits k⊥ from above while the ion damping
limits kz from below, imposing restrictions on the obliquity of
propagation. For a given k⊥, as kz decreases and the propagation
becomes more oblique, the dissipation becomes stronger and the
whistler wave ceases to exist at k ∼ ω /c. It is easy to see that
pe

kz|k2
z

. (7

thy calculation usin
(80)

βi

+ βi(1 + a))

2

i(1 + a))

]
, (81)

lae (80) and (81) de-
proton kinetic-Alfvén

gs (e.g., Howes et al.
d a = 1, we estimate

llisionless damping of
tions to the Dlm tensor
d the ions. The electron
ions (77)–(79) as in the
n is obtained from the

z pi

this boundary corresponds to the line ω = k⊥vT i in Figure 1,
separating the whistler region II from the kinetic-Alfvén region
I in phase space. For even more oblique propagation (below
the boundary ω = k⊥vT i), a new mode appears in region I, the
kinetic-Alfvén wave, whose dispersion relation is different from
that of a whistler wave.

The discontinuity between the dispersion relations of the
kinetic-Alfvén and whistler waves, Equations (41) and (66),
reflects the differences in the physics governing the two modes.
These differences must be taken into account in order to derive
the nonlinear equations for the whistler and kinetic-Alfvén
waves. This analysis is presented in the following sections. We
demonstrate that the whistler waves are described by the EMHD
equations or, in the case of oblique propagation, by the REMHD
equations. In contrast, the kinetic-Alfvén waves are described
by the kinetic-Alfvén system of equations, which is different
from the EMHD equations.

6. NONLINEAR KINETIC-ALFVÉN EQUATIONS

As we discussed in Section 3, kinetic-Alfvén waves exist in
the wavenumber region kz � k⊥ for the plasma parameters

8
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we consider, where kz and k⊥ are the typical wavenumbers of
fluctuations in the directions parallel and perpendicular to the
magnetic field, respectively. As will be explained in more detail
below, the nonlinear effects in this case become significant for
relatively small fluctuations of the magnetic field, satisfying
kzB0 ∼ k⊥b, where B0 is the non-fluctuating component and
b is the fluctuating part of the magnetic field. This fact implies
that even in the case of strong turbulence, fluctuations of the
distribution function remain small and they can be obtained
through perturbation theory.

To demonstrate this finding, we consider the electron kinetic
equation (Equation (1)) with a small electric field. This equation
has a solution of the form fe(x, v, t)  f0e(v) + δfe, where
f0e is Maxwellian5 and the small perturbation δfe is given
by Equation (2). From this expression, we estimate δfe ∼
(eφ′/T )f0e, where we denote φ′ = iEz/kz. The applicability of
the perturbation procedure thus requires that eφ′/T � 1. This
condition does not necessarily imply that the corresponding
turbulence is weak, however. Indeed, the condition for strong
turbulence, k⊥b ∼ kzB0, implies that eφ′/T ∼ kz/k⊥ � 1.
Thus, the perturbation expansion holds even in the case of strong
turbulence if the wave propagation is oblique (e.g., Howes et al.
2008a). The same conclusion could also be reached starting
from the ion kinetic equation, with the quasi-neutrality condition
ensuring that qiφ/Ti ∼ −eφ′/Te � 1.

In order to derive fluid-like equations for nonlinear kinetic-
Alfvén waves, we now consider the first two moments of the
electron kinetic equation (Equation (1)). First, we integrate
this equation over velocity and obtain the electron continuity
equation

∂ne/∂t + ∇ · (neve) = 0, (88)

where, by definition, ne = ∫
fed

3v and neve = ∫
fevd3v.

Second, we multiply the equation by v and integrate over
velocity to obtain the momentum equation

− ∇mΠlm − ene

me

El − ene

me

[ve × B]l = 0, (89)

where Πlm = ∫
vlvmfed

3v, summation over repeated indices
is assumed, and we neglected the time derivative (or the
electron inertia term) since we are interested in low-frequency
fluctuations, ω � kzvT e.

To calculate the term Πlm in the resulting force-balance
equation, we need to know the electron distribution function.
In principle, the electron distribution function can be calculated
from the kinetic equation perturbatively assuming a small
parameter eφ′/Te. However, the form of the distribution function
can be established in a simpler way if we use the conditions
ω � kzvT e and k⊥ρe � 1. The first condition tells us that
we can neglect the term ∂fe/∂t in the kinetic equation. The
second condition allows us to look for the solution of the form
(Aleksandrov et al. 1984)

fe = n0me
3/2

(2πTe)3/2
exp

(
eφ′

Te

− me(v − ve)2

2Te

)
, (90)

where Te = const and the electron drift velocity ve is much
smaller than the electron thermal velocity. The functions φ′(x, t)
and ve(x, t) are related to the electric and magnetic fields through

− ∇φ′ = E +
1

c
[ve × B] . (91)

5 We set aside the fact that the unperturbed distribution function may be
non-Maxwellian. We plan to address more general cases in a future study.

The solution (Equation (90)) approaches the Maxwellian distri-
bution for eφ′/Te → 0.6 Equation (91) explains the fact already
observed in the linear case that the electrons adjust to the po-
tential existing in the co-moving frame. We now obtain from
Equation (90) the pressure tensor in the form:

Πlm = δlm Te

me

ne, (92)

where

ne = n0 exp(eφ′/Te). (93)

With the aid of Equations (88) and (92), the force balance in the
electron momentum equation can be re-written in a fluid-like
form

− 1

neme

∇pe − e

me

E − e

mec
[ve × B] = 0, (94)

where pe = neTe is the electron pressure. The force-balance
equation thus agrees with that of an isothermal electron fluid.

Analogously, in the low-frequency regime, ω � k⊥vT i , the
solution for the ion kinetic equation is expected to have the form

fi = n0mi
3/2

(2πTi)3/2
exp

(
−qiφ

Ti

− mi(v − vi)2

2Ti

)
, (95)

where Ti = const and vi is much smaller than the ion thermal
speed. Similarly to the electron case, the potential φ and the ion
drift velocity satisfy the equation

− ∇⊥φ = E⊥ +
1

c
[vi × B] , (96)

although in the ion case this equation holds only for the
component of the electric field perpendicular to the magnetic
field, since the ion motion along the field lines may not satisfy
the low-frequency condition ω � k‖vT i . It can be checked that
due to k⊥ρi � 1, the last term in Equation (96) must be small7

and we can approximate −∇⊥φ ≈ E⊥. Noting that in the case
of k⊥ � k‖ the perpendicular component of the electric field
dominates, E⊥ � E‖, we see that φ represents the potential part
of the electric field. Similarly to the derivation of Equation (94),
we now integrate the ion kinetic equation with v and derive the
part perpendicular to the magnetic field

− 1

nimi

∇⊥pi +
qi

mi

E⊥ +
qi

mic
[vi × B] = 0, (97)

where

ni = n0 exp(−qiφ/Ti), (98)

and pi = niTi is the ion pressure. Equation (97) can be used
to remove the electric field from the electron force-balance
equation (Equation (94)), which allows us to re-write its part
perpendicular to the magnetic field in a more familiar fluid-like
form

− ∇⊥pe − ∇⊥pi + (1/c)J × B = 0, (99)

6 Once again, we do not consider possible non-Maxwellian solutions here.
7 This fact can also be seen directly from Equation (1), where we can neglect
the term qi [v × B] ∂fi/∂p compared with v∂fi/∂x, due to k⊥ρi � 1.

9
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Equations (88), (94), and (97), along with the magnetic induc-
tion equation, form a complete set of equations for kinetic-
Alfvén waves.

We represent the magnetic field in terms of the mean and
fluctuating parts as follows B = (B0 + bz)ẑ + b⊥. The fact
that the z-component of the magnetic fluctuations should be
retained, together with B0, follows from the force-balance
equation (Equation (99)). Taking into account k‖ � k⊥, we
derive from this relation

− 1

4π
B0∇⊥bz − ∇⊥pe − ∇⊥pi = 0, (100)

which gives an estimate bz/B0 ∼ β(δne/n0). For β � 1, the
fluctuations of bz can be neglected, while for β ∼ 1 (the case
we consider in this work) they should be retained.

From the force balance in the electron momentum equation
(Equation (94)), it follows that the electrons are advected across
the magnetic field by the “E × B” drift velocity and the
diamagnetic drift velocity, respectively,

ve⊥ = c

B2
E × (B0 + bzẑ) +

c

neeB2
∇pe × (B0 + bzẑ), (101)

where an approximate expression B2 ≈ B2
0 + 2B0bz should be

substituted in the denominators of Equation (101). As for the
motion of the electrons parallel to the magnetic field it can be
expressed through the current J‖ = −eneve‖, since the velocity
of ions parallel to the field is relatively small. The perpendicular
component of the fluctuating magnetic field can be expressed
through the flux function b⊥ = ẑ × ∇ψ , such that

J‖ ≈ Jz = (c/4π )∇⊥ × b⊥ = (c/4π )∇2
⊥ψ. (102)

The flux function is the (negative) component of the vector
potential parallel to the field, ψ = −Az. In the considered case
of strong anisotropy, k‖ � k⊥, the component of the fluctuating
magnetic field parallel to the field is related to the (non-potential)
component of the electric field perpendicular to the field through
the magnetic induction equation,

− 1

c

∂bz

∂t
= [∇ × E⊥]z. (103)

To derive the equations for nonlinear kinetic-Alfvén waves,
we use the electron continuity equation (Equation (88)) and
the magnetic induction equation. The force balance paral-
lel to the magnetic field in the electron momentum equation
(Equation (94)) gives

− ∇‖pe − neeE‖ = 0, (104)

where the electric field is E = −∇φ−(1/c)∂tA. Supplementing
this equation with the electron continuity equation,

∂ne/∂t + ∇ · (neve⊥) − (1/e)∇‖J‖ = 0, (105)

and using the induction equation (Equation (103)) to express the
non-potential part of the electric field, one obtains the following
system of equations for the fluctuating parts of the magnetic and
density fields:

1

c

∂

∂t
ψ − ∇‖φ +

1

nee
∇‖pe = 0, (106)

∂

∂t

[
ne

n0
− bz

B0

]
− c

B0
∇φ × ẑ · ∇

[
ne

n0
− bz

B0

]

− c

eB0
∇

(
pe

n0

)
× ẑ · ∇

(
bz

B0

)
− 1

en0
∇‖J‖ = 0. (107)

These equations are written in general form, where the pres-
sure term for the electrons can be arbitrary as long as the fluid
description of Equations (88) and (94) holds. Such equations
were derived and studied previously in various regimes, (e.g.,
Hazeltine 1983; Scott et al. 1985; Camargo et al. 1996; Terry
et al. 2001; Schekochihin et al. 2009; Smith & Terry 2011;
Boldyrev & Perez 2012). In the case relevant to our considera-
tion, the equations of state are isothermal.

In the nonlinear case when the magnetic fluctuations obey
kzB0 ∼ k⊥b, we must distinguish the gradients along the guide
field B0, denoted as ∇z, from the gradients along the local field
B = B0 + b, denoted as ∇‖. The gradients in Equations (106)
and (107) parallel to the field are thus defined as

∇‖ = ∇z +
1

B0
ẑ × ∇ψ · ∇ . (108)

In our discussion of strong kinetic-Alfvén turbulence, we will
assume that the fluctuations are anisotropic with respect to the
magnetic field in such a way that the linear and nonlinear terms
in Equations (107) and (110) are of the same order, that is,

B0∇z ∼ ẑ × ∇ψ · ∇. (109)

This ordering is analogous to the so-called critical balance
condition, kzB0 ∼ k⊥b, of Goldreich & Sridhar (1995); see also
Cho & Lazarian (2004), Howes et al. (2011), and TenBarge
& Howes (2012). This ordering shows that for kz � k⊥,
nonlinearity becomes important already for small perturbations.
When condition (109) is satisfied, Equations (106) and (107) are
essentially nonlinear and three-dimensional.

For completeness, we also note that in the limit of small
plasma beta, we have bz → 0 and the electron continuity
equation (107) turns into

∂

∂t
ne − c

B0
∇φ × ẑ · ∇ne − 1

e
∇‖J‖ = 0. (110)

This equation demonstrates that in the limit of small beta the
electrons are advected across the field lines only by the “E ×B”
drift. Indeed, when the magnetic field strength does not change,
that is, bz = 0, the diamagnetic drift does not advect the
electron density. Physically, this situation occurs because the
guide centers of particles do not move when a diamagnetic
current is present. That is why the diamagnetic drift does not
enter Equation (110) even in the case of a general equation
of state. However, if the magnetic field strength changes, the
magnetic curvature effects do affect the density advection and
terms with derivatives of bz do not cancel out.

The system of equations involving three fields, ne, ψ , and
φ ((106) and (110)) or the system of equations involving four
fields ne, bz, ψ , and φ ((106) and (107)) are incomplete, as they
have more independent fields than equations. The uniqueness is
restored when the systems are supplemented by the equations for
the ions. The situation here depends on the scales considered.
Briefly deviating from our main discussion, we mention that
above the ion-cyclotron scale, ρi = vT i/Ωi , a fluid description
can be justified for the ions if the ions are cold, which is
essentially the limit of low beta. (This case is applicable to
most laboratory plasmas, the context in which the corresponding
equations were originally derived.) In this case, the ions move
across the magnetic field due to the “E × B” drift and the so-
called polarization drift. One can write the charge conservation
law, ∂ρ/∂t + ∇⊥J⊥ + ∇‖J‖ = 0, where the parallel current is

10
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given by the electrons, while the perpendicular current is due to
the polarization drift of the ions (the “E × B” drifts are the same
for ions and electrons; they do not lead to charge separation and
do not contribute to the current). It can be shown that quasi-
neutrality is preserved for ωpα � Ωα , therefore, the charge
continuity equation can be reduced to ∇⊥J⊥ + ∇‖J‖ = 0, which
can be re-written as (e.g., Terry et al. 2001)

nimic
2

B2
0

[
∂

∂t
∇2φ − c

B0
∇φ × ẑ · ∇∇2φ

]
= ∇‖J‖. (111)

Equations (106), (110), and (111) provide the closed three-field
system for evolution of electric, magnetic, and density fields in
the case of low plasma beta.

If the plasma beta is not small (the case of interest in
this work), the ions require kinetic description and a simple
fluid model is not justified. We, however, are interested in the
subproton, dispersive kinetic-Alfvén waves, that is, we consider
scales smaller than the ion gyroscale k⊥ρi � 1. At such scales,
the ions are (spatially) not magnetized. Moreover, since we are
interested in frequencies smaller than kvTi, we have the simple
response for the ion-density fluctuations (Equations (98) and
(69)). The quasi-neutrality condition ni = ne then relates the
electric potential to the electron density,

φ = −(Ti/e) ln(ne/n0). (112)

Similarly, in the three-field system, the bz field can be removed
from Equation (107) with the aid of the force-balance equation
perpendicular to the magnetic field (Equation (100)):

bz = −4π (Ti + Te)δne/B0. (113)

These expressions for the electric potential φ and the magnetic
field bz leave us with only two independent fields, the electron
density and the magnetic flux function. Let us normalize these
expressions as follows

ñ = vs

vA

(
1 +

Ti

Te

)1/2 [
1 +

v2
s

v2
A

(
1 +

Ti

Te

)]1/2
ne

n0
, (114)

ψ̃ = vse

cTe

ψ, (115)

and normalize the time and the length according to

t̃ = (1 + Ti/Te)1/2

(ρs/vA)
[
1 + (vs/vA)2 (1 + Ti/Te)

]1/2 t, (116)

x̃ = x
ρs

. (117)

In the rest of this section, we will use only the normal-
ized variables and we will omit tilde symbol. The system
(Equations (106) and (107)) then takes the form

∂tψ + ∇‖n = 0, (118)

∂tn − ∇‖∇2
⊥ψ = 0, (119)

where ∇‖ = ∇z+ẑ×∇ψ ·∇⊥. Notice that the nonlinearity enters
this system only through the magnetic-line bending effects in ∇‖.

The presented ideal system conserves total energy E and the
cross-correlation H:

Eka =
∫ (|∇⊥ψ |2 + n2

)
d3x, (120)

Hka =
∫

ψnd3x. (121)

The system (Equations (118) and (119)) possesses linear waves,
nk ∝ ψk ∝ exp(−iωt + ikx). The linearization is achieved
by neglecting the second term in the right-hand side of
Equation (108), that is, by replacing ∇‖ → ∇z, which gives
the (dimensionless) dispersion relation for the kinetic-Alfvén
waves:

ω2 = k2
z k

2
⊥. (122)

The linear modes are characterized by the equipartition between
the density and magnetic fluctuations, nk = ±k⊥ψk .

It is easy to check that the linearized equations produce the
same dispersion relation and wave polarization given by the
kinetic theory, that is, Equations (41)–(43). Also, note that
we do not require the frequencies to be smaller than the ion
gyrofrequency, as is implied, e.g., in gyrokinetic treatments,
therefore, our results are applicable to region I in Figures 1 and
2 both below and above Ωi .

7. NONLINEAR WHISTLER EQUATIONS: ELECTRON
MHD AND REDUCED ELECTRON MHD

As we demonstrated in Section 4, for the considered plasma
parameters the whistler waves exist only in the wavenumber
region kz/k⊥ � 1/(k⊥ρi), which implies that kz cannot be too
small compared with k⊥. According to the critical balance con-
dition (Equation (109)), the nonlinear effects become important
for the whistler waves for magnetic field fluctuations that are
significantly larger compared with those in the kinetic-Alfvén
case. It is therefore reasonable to expect that whistler turbulence,
if it is present in those systems at subproton scales, should pre-
dominantly be weak. In this case, the kinetic treatment presented
in Section 4 should suffice.

If, however, nonlinearities need to be taken into account, it
is convenient to use a nonlinear system for whistler waves.
This system is derived if one notes that the frequencies of
whistler modes are high, ω � kvT i , so that the ions can be
considered cold. Moreover, since we are studying subproton
scales, k⊥ρi � 1, the ions are non-magnetized both spatially
and temporally, ω � Ωi . The fluid equations for “cold” non-
magnetized ions then agree with the single-particle motion
equations,

dvi/dt = (qi/mi)E, (123)

∂ni/∂t + ∇ · (nivi) = 0. (124)

For the density fluctuations, these equations lead to exactly the
same expression as Equation (70), which demonstrates that for
high frequencies, ω � kvT i , the ion-density fluctuations can
be neglected. The ion fluctuation velocity is estimated from
these equations as vi ∼ (qφ/Ti)(kvT i/ω)vT i , while the electron
velocity is estimated from the current to be ve ∼ J/(ne) ∼

11
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ckB/(ne). We therefore obtain that the ion velocity is negligible
compared with the electron velocity,

vi

ve

∼ qφk

Ti

(kρi)

(
ω2

pi

k2c2

)(
kvT i

ω

)
� 1, (125)

where we used kρi ∼ kc/ωpi � 1 and kvT i/ω � 1.
Similar to the kinetic-Alfvén case, we now use the force

balance in the electron momentum equation (Equation (94))
and the magnetic induction equation. The force balance is easy
to write if one neglects the pressure-gradient term (indeed, the
electrons are isothermal and their density does not change)

E +
1

c
ve × B = 0, (126)

where ve = −J/(n0e). The induction equation then takes the
form

∂

∂t
B = −∇ × c

4πn0e
[(∇ × B) × B] . (127)

This equation is the electron MHD (EMHD) equation (e.g.,
Gordeev et al. 1994). A linearization of Equation (127) around
a uniform background field B0 leads to the dispersion relation
of whistler waves (Equation (66)).

We now demonstrate how the EMHD equations can be sim-
plified in the presence of a uniform magnetic field B0 and
anisotropic fluctuations, kz/k⊥ � 1. In the case of oblique
propagation, the system becomes strongly nonlinear for a rela-
tively small fluctuating field, satisfying the critical balance con-
dition b/B0 ∼ kz/k⊥. The EMHD equation (Equation (127))
can then be simplified by keeping only the leading terms in this
small parameter (c.f., e.g., Schekochihin et al. 2009). As a result,
one obtains what we call the reduced electron MHD (REMHD)
equations, which can be conveniently written in terms of the
two variables, the z-component of the magnetic field, bz, and
the z-component of the vector potential, ψ = −Az:

∂tψ = − cB0

4πn0e
∇‖bz, (128)

∂tbz = cB0

4πn0e
∇‖∇2

⊥ψ, (129)

with the same definition of ∇‖ as in Equation (108).
To elucidate the similarities and differences between the

REMHD equations (Equations (128) and (129)) and the pre-
viously derived kinetic-Alfvén equations (Equations (118) and
(119)), it is instructive to also derive the REMHD equations
directly from the electron drift picture, similar to our deriva-
tion of the kinetic-Alfvén system (Equations (106) and (107)).
For that, we first analyze the force balance in the electron mo-
mentum equation. When the electron-density fluctuations are
neglected, this equation takes the form of Equation (126). For
the considered case of oblique propagation satisfying the criti-
cal balance condition, we obtain the following equation for the
component perpendicular to the magnetic field

E⊥ = ∇⊥
B0

4πn0e
bz, (130)

which demonstrates that the perpendicular component of the
electric field is almost potential, that is, E⊥ = −∇⊥φ, where

φ = − B0

4πn0e
bz. (131)

This result is also consistent with the linear case, where the
whistler electric field is given by Equations (67) and (68), and
it becomes almost potential for kz � k⊥.

Substituting the expression for the electric potential
(Equation (131)) into Equations (106) and (107) and neglect-
ing the electron-density fluctuations, we rederive the REMHD
equations (Equations (128) and (129)). Note the essential dif-
ference in the expressions for the electric potential and the elec-
tron density used in the derivation of the REMHD equations
(Equation (131) and δne ≈ 0) and the corresponding expres-
sions used in the derivation of the kinetic-Alfvén equations
(Equations (112) and (113)). These differences reflect the dif-
ferent dynamics of the ions in the two systems.

Similarly to the kinetic-Alfvén case, one can introduce the
dimensionless variables

ψ̃ = vse

cTe

ψ, b̃z = bz

B0
, (132)

t̃ = v2
s

v2
A

Ωi t, x̃ = x
ρs

, (133)

which cast the REMHD system (Equations (128) and (129))
into the form

∂t ψ̃ + ∇‖b̃z = 0, (134)

∂t b̃z − ∇‖∇2
⊥ψ̃ = 0, (135)

which is structurally equivalent to the kinetic-Alfvén system
(Equations (118) and (119)). The corresponding conservation
laws are now the conservation of energy and helicity of the
magnetic fluctuations

Ew =
∫ (

|∇⊥ψ̃ |2 + b̃2
z

)
d3x, (136)

Hw =
∫

ψ̃b̃zd
3x. (137)

Although the mathematical structure of the obtained system
is formally equivalent to that of the kinetic-Alfvén system, the
normalization of the fields (Equations (132) and (134)) is dif-
ferent owing to the difference in the ion dynamics between the
two systems. The mathematical similarity of the REMHD sys-
tem and the kinetic-Alfvén system, however, implies similarity
in the scaling relations of the corresponding turbulent states,
which are discussed in the following sections.

Before we leave the discussion of the nonlinear equations, we
note that the considered subproton kinetic-Alfvén and EMHD
equations provide examples of systems where a fluid description
can be applied to a collisionless, or weakly collisional, plasma.
The applicability of the fluid approximation to collisionless
plasmas in certain cases is a known fact; other examples and
further discussion can be found in, e.g., Ginzburg (1970) and
Aleksandrov et al. (1984).

8. KINETIC-ALFVÉN TURBULENCE

In a turbulent state, the energy E cascades toward small
scales while the cross-correlation H cascades toward large
scales. A standard phenomenological approach addressing the
energy cascade at small scales is discussed in, e.g., Vainshtein
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Figure 3. Energy spectrum of strong kinetic-Alfvén turbulence at subproton scales, obtained in two-field numerical simulations with a resolution a 5123 (Boldyrev &
Perez 2012) and compensated by k8/3. For comparison, the dash-triple-dot line shows the total spectrum compensated by k7/3. k⊥ is plotted on the horizontal axis.

(1973), Biskamp et al. (1999), Ng et al. (2003), Cho & Lazarian
(2004), Howes et al. (2008b) and Cho & Lazarian (2009).
This approach assumes that in strong turbulence the critical
balance condition, which ensures that both linear and nonlinear
terms in Equation (108) are of the same order, should be
satisfied at all scales. Let us denote nλ and ψλ the typical
(rms) fluctuations of the density and the magnetic flux function,
respectively, at the field-perpendicular scale λ, and l as the
corresponding scale of those fluctuations parallel to the field.
By balancing the linear and nonlinear terms in Equation (108),
we estimate l ∼ λ2/ψλ, in which case the time of nonlinear
interaction is comparable to the inverse of the linear frequency
(Equation (41)), τ ∼ 1/ω ∼ lλ ∼ λ3/ψλ. In addition, we
estimate from Equations (118) and (119) that nλ ∼ ψλ/λ. The
energy associated with the scale λ can therefore be estimated
as Eλ ∼ n2

λ, and the condition of constant energy flux in the
turbulent cascade leads to n2

λ/τ = const, which translates into a
scaling of nλ ∼ ψλ/λ ∼ λ2/3 for turbulent fields. The resulting
Fourier energy spectrum of strong kinetic-Alfvén turbulence is

EKA(k⊥) dk⊥ ∝ k
−7/3
⊥ dk⊥. (138)

We will numerically study kinetic-Alfvén turbulence based on
the dimensionless equations (118) and (119). As was previously
explained, the critical balance condition requires that kz � k⊥ in
the case of strong turbulence. We note, however, that the ideal
equations (118) and (119) admit a rescaling ∂/∂t → ε∂/∂t ,
∇z → ε∇z, n → εn, and ψ → εψ with arbitrary ε, which
preserves the critical balance. This result reflects the fact that
equations (118) and (119) lack any frequency scale, since
they are derived in the limit of an infinitely large electron
gyrofrequency. We may therefore always simultaneously rescale
the fields in these equations and the size of the simulation box
in the z-direction to satisfy kz ∼ n ∼ ψ ∼ 1. Such a rescaling
is assumed in the numerical simulations discussed below.

To study steady-state turbulence, we supplement
Equations (118) and (119) with large-scale random forces that
supply the energy to the system:

∂tψ + ∇‖n = η∇2
⊥ψ + fψ, (139)

∂tn − ∇‖∇2
⊥ψ = ν∇2

⊥n + fn. (140)

The small dissipation terms serve to remove energy at small
scales and they are mostly needed to stabilize the code. We solve
these equations on a triply periodic cubic domain (L3, L = 1)
using standard pseudo-spectral methods. The random forces fψ

and fn are applied in Fourier space at wavenumbers 2π/L �

kx,y � 2(2π/L), kz = 2π/L. The Fourier coefficients outside
the above range are zero and are Gaussian random numbers
with amplitudes chosen so that |∇ψ |rms ∼ 1 inside that range.
The individual random values are refreshed independently on
average every τ = 0.1L/(2π |∇ψ |rms). We choose ν = η =
0.01.

The energy spectrum obtained numerically is shown in
Figure 3. It turns out that it is steeper than the spectrum −7/3
predicted by phenomenological theories based on dimensional
arguments. It is interesting that a spectrum steeper than −7/3
was also inferred from observations of subproton magnetic and
density fluctuations in the solar wind (e.g., Sahraoui et al. 2006;
Chen et al. 2010, 2012b; Alexandrova et al. 2011, 2012).

Various explanations have been proposed for the steeper than
−7/3 spectrum of subproton turbulence observed in the solar
wind. These explanations include steepening of the spectrum
by Landau damping, turbulence weakening, wave–particle in-
teractions, etc. (e.g., Rudakov et al. 2011; Howes et al. 2011).
In our analytical and numerical approach, wave–particle inter-
actions are absent, however, the steeper spectrum persists. A
possible explanation proposed in Boldyrev & Perez (2012) in-
voked intermittent corrections that result from two-dimensional
structures formed by density and magnetic fluctuations. It was
proposed that the spectrum should be close to −8/3, a value
consistent with observations and numerical simulations. This
fact points to an interesting possibility that the observed scal-
ing is not an artifact of non-universal or dissipative effects;
rather, it is an inherent property of the nonlinear turbulent dy-
namics. The spectrum may therefore be universal, analogous
to the Kolmogorov spectrum of fluid turbulence. A definitive
numerical study that requires higher numerical resolution will
be conducted elsewhere.

We also note that the magnetic energy exceeds the kinetic
energy at all scales in the inertial interval. Quite interestingly, the
ratio of the density energy to the magnetic energy, the nonlinear
electron compressibility, is independent of the wavenumber in
the inertial interval, which is similar to the behavior observed
in the linear case (cf. Equation (54)). Our additional runs (not
shown here) demonstrate that the excess of the magnetic energy
is not related to the forcing routine; the excess of magnetic
energy in the inertial interval is also observed in simulations
where only the density field is forced or where both the
density and magnetic fields are forced at large scales. From
Figure 3 we estimate |bk⊥|2/|nk|2 ≈ 1.25 in dimensionless
units (Equations (114)–(117)).8 We propose that this effect

8 Similarly, in the case of strong oblique whistler turbulence, see
Equations (128) and (129), implying that b2

⊥/b2
z ≈ 1.25.
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Figure 4. Energy spectrum of the electric field perpendicular to the field,
E⊥ ∝ ∇⊥n (top panel) and the electric field parallel to the field, E‖ ∝ ∇n ·B/B

(bottom panel) in strong kinetic-Alfvén turbulence at subproton scales, obtained
from the numerical simulations of Equations (139) and (140) with a resolution
of 5123 (Boldyrev & Perez 2012). k⊥ is plotted on the horizontal axis.

is analogous to the generation of residual energy in MHD
turbulence, where magnetic energy also provides the dominant
contribution (e.g., Frisch et al. 1975; Müller & Grappin 2005;
Podesta et al. 2007; Tessein et al. 2009; Mininni & Pouquet
2009; Boldyrev & Perez 2009; Wang et al. 2011; Boldyrev et al.
2011, 2012; Borovsky 2012; Chen et al. 2013a). We also point
out that it is the total energy rather than its density and magnetic
field components that exhibits a good scaling in an interval of
limited extent, in close analogy with MHD turbulence.

Finally, we discuss the spectrum of the electric field. In our
model, its potential part is rigidly related to the density field (cf.
Equation (112)). So, we have that E⊥ ∝ k⊥nk and the spectrum
of the mostly potential perpendicular electric field should be
given by

EE⊥ (k⊥) dk⊥ ∝ k
−2/3
⊥ dk⊥. (141)

The spectrum of the parallel electric field is then found from
E‖ ∝ k‖nk , which gives

EE‖(k⊥) dk⊥ ∝ k
−4/3
⊥ dk⊥, (142)

where we take into account the anisotropy predicted in the phe-
nomenological model of Boldyrev & Perez (2012), k‖ ∝ k

2/3
⊥ .

The results of the measurements are shown in Figure 4.
The top panel shows the spectrum of the perpendicular com-
ponent of the electric field, compensated by the predicted k2/3.
This component, by definition, follows the density spectrum in
Figure 3. In contrast with the total energy spectrum, the density
spectrum by itself does not exhibit a good power law in our
inertial range of limited extent and neither does the spectrum
of E⊥. The bottom panel of Figure 4 shows the spectrum of
E‖ ≡ E · B/B, compensated by the best fit power law in the in-
terval k ∈ [5, 15] (the inertial interval in Figure 3). Although no
definite power law is observed, the best fit based on this entire
range is given by k−2

⊥ , with k−1.4
⊥ fitting better at the lower end

and k−2.6
⊥ fitting better at the higher end of this range. Although

the −1.4 scaling is close to our phenomenological estimate, the
much steeper behavior in the rest of the interval is not yet un-
derstood. Note, however, that a steep E‖ spectrum at subproton

scales has also been recently observed in the solar wind (Mozer
& Chen 2013).

From a practical point of view, the electric field is not easy to
measure since it depends of the frame of the observations (e.g.,
Bale et al. 2005; Chen et al. 2011). The electric field measured
in the moving frame must be transformed to the rest frame of the
plasma before its spectrum is calculated. In the case of the solar
wind, this procedure requires subtraction of a large quantity,
vsw × B, from the electric field measured by a satellite, where
vsw is the solar-wind velocity relative to the satellite. In contrast,
the E‖ electric field is Galilean invariant and its measurements
are frame-independent.

9. A NOTE ON WHISTLER TURBULENCE

As we pointed out in Section 7, the kinetic-Alfvén equations
(118) and (119) are structurally identical to the reduced EMHD
equations (128) and (129). This fact ensures that the scaling
properties of kinetic-Alfvén turbulence and EMHD turbulence
should be identical in the limit k‖ � k⊥. Strong EMHD turbu-
lence has been numerically studied in the literature previously
(e.g., Biskamp et al. 1999; Cho & Lazarian 2009), where a
magnetic energy spectrum closer to −7/3 has been reported. As
discussed in the previous section, the spectrum observed in our
simulations is steeper than −7/3; a complete understanding of
this steepening will probably require higher numerical resolu-
tion. We should, however, point out that the systems studied in
previous works are not identical to our system (Equations (139)
and (140)). For example, the studies of Biskamp et al. (1999)
addressed three-dimensional decaying EMHD turbulence with-
out a background field. In addition, their equations were also
different from Equation (127), as they included terms associated
with the finite electron inertia length de = c/ωpe.

Work by Cho & Lazarian (2009) contains simulations of
EMHD with a strong background magnetic field, which make
their setup closer to ours. However, these simulations also
concentrate on decaying turbulence, which does not reach
a steady state. The initial conditions in those runs deviate
from the critical balance that would be needed in order to
ensure strongly nonlinear coupling. Considering their ranges of
initially populated k‖ and k⊥, one estimates that the parameter
k‖B0/(k⊥b) is somewhere between 0.7 and 5 at large scales, so
turbulence may be already on the “weaker” side at the beginning
of the evolution (in comparison, in our runs, this parameter is
kept between 0.5 and 1). As the fluctuations decay, turbulence
becomes progressively weaker since the background field does
not change. In addition, both papers (Biskamp et al. 1999; Cho
& Lazarian 2009) employ hyperviscosities and run at lower
spatial resolutions compared with our runs.

The regime of weak whistler turbulence has also been
addressed in the literature for the cases of both parallel and
oblique propagation with respect to the magnetic field (Livshitz
& Tsytovich 1972; Boldyrev 1995; Galtier & Bhattacharjee
2003, 2005). In the limit of oblique propagation, which is more
relevant to our consideration, the spectrum of weak whistler
turbulence was studied in Boldyrev (1995) and Galtier &
Bhattacharjee (2003). In these works, it was found that the
kinetic equation for the energy spectrum had a formal steady
biscaling solution

E(k‖, k⊥)dk‖dk⊥ ∝ k
−1/2
‖ k

−5/2
⊥ dk‖dk⊥, (143)

which should correspond to a constant energy flux in k-
space. Galtier & Bhattacharjee (2003) also presented an elegant
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heuristic analysis that allowed the deviation of the anisotropic
whistler spectrum (Equation (143)) from dimensional argu-
ments. The same energy spectrum has also been derived for weak
kinetic-Alfvén turbulence by Voitenko (1998), which agrees
with the established similarity between the kinetic-Alfvén equa-
tions and the REMHD equations; see our discussion at the end
of Section 7. It was, however, pointed out in Boldyrev (1995)
that the formal solution (Equation (143)) is non-local, that is, the
collision integral in the wave kinetic equation diverges logarith-
mically for such a spectrum at low wavenumbers. The question
of whether the formal solution (Equation (143)) or a solution
with the exponents close to those in Equation (143), is physi-
cally realizable therefore requires further study (e.g., Zakharov
et al. 1992, Chapter 3).

10. CONCLUDING REMARKS

We presented a systematic study of subproton turbulence in
a collisionless plasma, in the case of plasma beta ∼1. Our work
is based on a full kinetic derivation, which complements previ-
ously available fluid-like, gyrokinetic derivations and numerical
solutions of the Vlasov–Maxwell equations (e.g., Hollweg 1999;
Howes et al. 2006, 2008a; Gary & Smith 2009; Schekochihin
et al. 2009; Sahraoui et al. 2012). As we demonstrated, the
full kinetic derivation allows one to effectively address the dy-
namics of kinetic-Alfvén and whistler modes in both linear and
nonlinear regimes at subproton scales.

These modes have principal differences, which can be char-
acterized from both formal mathematical and physical points
of view. The regions of phase space where the kinetic-Alfvén
and the whistler modes exist are shown in Figures 1 and 2.
The kinetic-Alfvén modes occupy region I in these figures,
both below and above the ion-cyclotron frequency Ωi . More
specifically, they exist in the phase space region ω � kvT i

and kzρi � 1. The whistler modes occupy an essentially
different region II in Figure 1; more specifically, the region
kzvT e � ω � kvT i and kzρi � 1.

The physical difference between kinetic-Alfvén and whistler
modes is in the dynamics of the ions. In kinetic-Alfvén fluctu-
ations, the ions are dynamically important; they rapidly adjust
to the fluctuating electric potential in the plasma. The kinetic-
Alfvén fluctuations are essentially compressible and they are
described by the kinetic-Alfvén system (Equations (118) and
(119)). In the case of whistler modes, on the other hand, the
ions are dynamically irrelevant; they provide a uniform sta-
tionary background, which, together with the quasi-neutrality
condition, ensures effective incompressibility of the whistler
modes. The whistler fluctuations are electron fluctuations; they
are described by the EMHD equations (Equation (127)) or the
REMHD equations (Equations (128) and (129)).

The kinetic-Alfvén and whistler modes share the same dis-
persion relation scaling, which may cause ambiguity when these
waves are identified in numerical simulations or observations. In
addition, as we discussed in Section 7, the corresponding non-
dimensional fluid-like models have similar structures that may
artificially blur their differences. Analysis of the ion dynamics
helps to remove a possible ambiguity in such cases. In particular,
analysis of the ion dynamics allows one to classify the subproton
oscillations obtained by different methods in the literature. For
example, according to our results, the modes obtained numer-
ically in Sahraoui et al. (2012, Figure 3) for large propagation
angles θ > 80◦ would be classified as kinetic-Alfvén waves, not
whistlers. Indeed, the ion dynamics are essential for these modes

since ω < k⊥vT i .9 Similarly, the system of equations derived
from gyrokinetics in Schekochihin et al. (2009, Equations (226)
and (227)) is essentially the kinetic-Alfvén system in our classi-
fication; it agrees with our Equations (118) and (119). Although,
as we have demonstrated in the present work, these equations
are applicable both above and below the ion gyrofrequency,
they are different from the REMHD equations (Equations (134)
and (135)); they do not describe oblique whistler waves, for
example.

Finally, we comment on an interesting possibility that in the
case when the kinetic-Alfvén frequency is comparable to the
ion-cyclotron frequency, the kinetic-Alfvén modes may couple
to the ion-Bernstein modes (e.g., Howes et al. 2008b; Podesta
2012; Chen et al. 2013b). The ion-Bernstein waves have a
frequency satisfying ω − Ωi ∼ Ωi/

√
k⊥ρi . The collisionless

ion damping of these modes is negligible when k‖vT i/(ω −
Ωi) � 1. From the dispersion relation of kinetic-Alfvén
waves (Equation (41)), we see that ωka ∼ Ωi is satisfied
when k‖vT i ∼ Ωi/(k⊥ρi), where we assumed βi ∼ 1. The
collisionless damping is therefore negligible when

√
k⊥ρi � 1.

In this limit, however, the ion-Bernstein modes occupy a narrow
band in frequency space and they may not couple effectively to
the kinetic-Alfvén modes. In the opposite case, when k⊥ρi is
not large, these modes are relatively strongly damped compared
with the kinetic-Alfvén modes (e.g., Podesta 2012) and they
also may not be effectively generated.
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