Quantum Mechanics, Physics 531
Homework Assignment 6, due April 28, 2008
Problem 1. Problem 6.2.

Problem 2. Problem 6.5. Using the result of the second order perturbation, calculate
the electric field susceptibility of a harmonic oscillator.

Problem 3. Problem 6.9.

Problem 4. Problem 6.14.

Problem 5. Problem 6.23.

Problem 6. Problem 6.32.

Problem 7. Problem 11 in Chapter 5 of Sakurai.

Problem 8. Problem 17(a) in Chapter 5 of Sakurai; part (b) is not required.
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256 Chapter 6 Time-Independent Perturbation Theory

*Problem 6.2 For the harmonic oscillator [V (x) = (1/2)kx2], the allowed ener-
gies are

E,=mn+1/2kw, (n=0,1,2...),

where w = +/k/m is the classical frequency. Now suppose the spring constant

increases slightly: k¥ — (1 4 €)k. (Perhaps we cool the spring, so it becomes less
flexible.) g

- (a) - Find the exact new energies (trivial, in this case). Expand your formula as a
power series in €, up to second order.

(b) Now calculate the first-order perturbation in the energy, using Equation 6.9.
What is H' here? Compare your result with part (a). Hinz: It is not neces-

sary—in fact, it is not permitted —to calculate a single integral in doing this
problem.

« #Problem 6.5 Consider a charged particle in the one-dimensional harmonic osc‘il-
lator potential. Suppose we turn on a weak electric field (E), so that the potential
energy is shifted by an amount H' = —qEx.

(a) Show that there is no first-order change in the energy levels, and calculate

mal), s0 the second-order correction. Hint: See Problem 3.33.

i i i in this case, by a change of
5dinger equation can be solved directly in '
® %aiig?x’ni x E (¢E/mw?). Find the exact energies, and show that they

are consistent with the perturbation theory approximation.
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266 Chapter 6 Time-Independent Perturbation Theory

«Problem 6.9 Consider a quantum system with just three linearly independent
states. Suppose the Hamiltonian, in matrix form, is

(1-¢) 0 0
H=W 0 1 €],
0 € 2

where Vp is a constant, and € is some small number (€ K 1).

(a) Write down the eigenvectors and eigenvalues of the unperturbed Hamiltonian |
(e =0).

(b) Solve for the exact eigenvalues of H. Expand each of them as a power series
in €, up to second order.

(c) Use first- and second-order nondegenerate perturbation theory to find the
approximate eigenvalue for the state that grows out of the nondegenerate
eigenvector of H 0, Compare the exact result, from (a).

(d) Use degenerate perturbation theory to find the first-order correction to the
two initially degenerate eigenvalues. Compare the exact results.

* *Pr_oblem 6.14 Find the (lowest-order) relativistic correction to the energy levels of
the one-dimensional harmonic oscillator. Hint: Use the technique in Example 2.5.

+ +Problem 6.23 Consider the (eight) n = 2 states, |21 m;my). Find the energy of ;
each state, under strong-field Zeeman splitting. Express each answer as the sum of
three terms: the Bohr energy, the fine-structure (proportional to a?), and the Zeeman
contribution (proportional to yp Bext). If you ignore fine structure altogether, how |
many distinct levels are there, and what are their degeneracies?




iltoni icular quantum system, is
* xProblem 6.32 Suppose the Hamiltonian H, for a partic .
a function of some parameter A; let E,(A) and ¥, (A) be the eigenvalues and

.
TIT Seetepvireave s wrsestwMseUTE LIIGUTY

eigenfunctions of H(A). The Feynman-Hellmann theorem?? states that

JE, oH
o <¢"'ﬁ
(assuming either that E, is nondegenerate, or—if degenerate—that the y,’s arc
the “good” linear combinations of the degenerate eigenfunctions). .

h/f,.) C6.103) §

(a) Prove the Feynman-Hellmann theorem. Hint: Use Equation 6.9,

(b) Apply it to the one-dimensional harmonic oscillator, (i) using A = w (thix 3
yields a formula for the expectation value of V), (ii) using A = A (this yields
(T)), and (iii) using A = m (this yields a relation between (T') and (V) §
Compare your answers to Problem 2.12, and the virial theorem predictions §
(Problem 3.31). :

e —

11. The Hamiltonian matrix for a two-state System can be written as

| E? AA
H = .

AN E?

Clearly the energy eigenfunctions for the unperturbed problems. (A = ()

are given by
1 0
w-(). w-(%)

a. Solve this problem exactly to find the energy eigenfunctions ¢, and |
¥, and the energy eigenvalues E, and E,. ‘ ]

b. Assuming that A|A| < |EQ - EQ|, solve the same problem using
time-independent perturbation theory up to first order in the energy
eigenfunctions and up to second order in the energy eigenvalues,
Compare with the exact results obtained in (a).

¢. Suppose the two unperturbed energies are “almost degenerate,” that
is,

|E? — E9| < AJA.

Show that the exact results obtained in (a) closely resemble what you
would expect by applying degenerate perturbation theory to this |

1M?r9blem W1th E} set exacfly equal to E2°f ‘ - -

T 7 ‘ Hamiltoni of a rigid rotator in a magnetic field
e g:f;ifgicﬁ;r I:)altlllllitzgl:?s of the f%)lrm (Merzbacher 1970, Problem
17-1) :
AL?+BL,+CL,
. if terms quadratic in the field are neglected. Assuming B > Q, use
perturbation theory to lowest nonvanishing order to get approximate
energy eigenvalues.

regarded as perturba-
m theory to calculate




