Quantum Mechanics, Physics 531 Homework Assignment 3, due March 10, 2008

Problem 1. Problem 3.14.

Problem 2. Problem 3.27.

Problem 3. Problem 3.38.

Problem 4. Problem 4.18.

Problem 5. A particle in a spherically symmetric potential is in an eigenstate $|l, m\rangle$ of $\hat{\mathbf{L}}^2$ and \hat{L}_z with eigenvalues l(l+1) and m, respectively. Prove that the expectation values are given by

$$\langle l, m | \hat{L}_x | l, m \rangle = \langle l, m | \hat{L}_y | l, m \rangle = 0$$

and

$$\langle l, m | \hat{L}_x^2 | l, m \rangle = \langle l, m | \hat{L}_y^2 | l, m \rangle = \frac{l(l+1) - m^2}{2}.$$

Interpret this result in the limit $l \gg 1$.

Problem 6. Consider a charged rotator in a magnetic field B with the total angular momentum l = 1, described by the Hamiltonian

$$\hat{H} = \frac{\hat{\mathbf{L}}^2}{2J} + \mu \mathbf{B}\hat{\mathbf{L}}.$$

Calculate time dependence of the expectation values $\langle \chi(t) | \hat{L}_x | \chi(t) \rangle$, $\langle \chi(t) | \hat{L}_y | \chi(t) \rangle$, and $\langle \chi(t) | \hat{L}_z | \chi(t) \rangle$, if at t = 0 the state $|\chi(t)\rangle$ was described by

$$|\chi(t)\rangle = c_{+}|l = 1, m = +1\rangle + c_{0}|l = 1, m = 0\rangle + c_{-}|l = 1, m = -1\rangle$$

and $\mathbf{B} = \{0, 0, B_z\}$. Hint: use the result of problem 4 above for operators \hat{L}_{\pm} .