Quantum Mechanics, Physics 531
 Homework Assignment 3, due March 10, 2008

Problem 1. Problem 3.14.

Problem 2. Problem 3.27.

Problem 3. Problem 3.38.
Problem 4. Problem 4.18.

Problem 5. A particle in a spherically symmetric potential is in an eigenstate $|l, m\rangle$ of $\hat{\mathbf{L}}^{2}$ and \hat{L}_{z} with eigenvalues $l(l+1)$ and m, respectively. Prove that the expectation values are given by

$$
\langle l, m| \hat{L}_{x}|l, m\rangle=\langle l, m| \hat{L}_{y}|l, m\rangle=0
$$

and

$$
\langle l, m| \hat{L}_{x}^{2}|l, m\rangle=\langle l, m| \hat{L}_{y}^{2}|l, m\rangle=\frac{l(l+1)-m^{2}}{2} .
$$

Interpret this result in the limit $l \gg 1$.
Problem 6. Consider a charged rotator in a magnetic field B with the total angular momentum $l=1$, described by the Hamiltonian

$$
\hat{H}=\frac{\hat{\mathbf{L}}^{2}}{2 J}+\mu \mathbf{B} \hat{\mathbf{L}} .
$$

Calculate time dependence of the expectation values $\langle\chi(t)| \hat{L}_{x}|\chi(t)\rangle,\langle\chi(t)| \hat{L}_{y}|\chi(t)\rangle$, and $\langle\chi(t)| \hat{L}_{z}|\chi(t)\rangle$, if at $t=0$ the state $|\chi(t)\rangle$ was described by

$$
|\chi(t)\rangle=c_{+}|l=1, m=+1\rangle+c_{0}|l=1, m=0\rangle+c_{-}|l=1, m=-1\rangle
$$

and $\mathbf{B}=\left\{0,0, B_{z}\right\}$. Hint: use the result of problem 4 above for operators $\hat{L}_{ \pm}$.

