Quantum Mechanics, Physics 531

Homework Assignment 2, due February 25, 2008

Problem 1. Problem 2.31.
Problem 2. Problem 2.34.

Problem 3. Problem 2.38.
Problem 4. A particle of mass m in one dimension is bound to a fixed center by an attractive δ-function potential $V_{\alpha}(x)=-\alpha \delta(x)$ with $\alpha>0$. A wave function is given by $\psi_{\alpha}(x)=\sqrt{\alpha m} / \hbar \exp \left(-m \alpha|x| / \hbar^{2}\right)$. At $t=0$ the potential is suddenly changed to $V_{\beta}(x)=-\beta \delta(x)$ with $\beta>0$. Calculate

$$
\chi_{\alpha \beta}=\int_{-\infty}^{+\infty} \psi_{\alpha}(x) \psi_{\beta}(x) d x
$$

Show that $\left|\chi_{\alpha \beta}\right|^{2} \leq 1$ and provide the interpretation of quantities $\left|\chi_{\alpha \beta}\right|^{2}$ and $1-\left|\chi_{\alpha \beta}\right|^{2}$.
Problem 5. Determine the energy levels of bound states in the potential

$$
U(x)= \begin{cases}U_{l}, & x<0 \\ 0, & 0<x<L \\ U_{r}, & x>L\end{cases}
$$

with $U_{l, r}>0$. Do not solve the corresponding transcendental equation, just derive it.
Show that for $U_{l} \neq U_{r}$ there are no bound states in a sufficiently narrow well with $L<L^{*}$. Estimate L^{*}.

Problem 6. Using the uncertainty relation for coordinate and momentum, determine the lower limit for the possible values of the energy of a quantum harmonic oscillator.

