Quantum Mechanics, Physics 531 Final Exam, due May 17, 2008

Problem 1. (20 points) a) Prove that the expectation value of the momentum operator $\hat{p}_x = -i\hbar\partial/\partial_x$ in a stationary state $\psi(x)$ is zero, $\langle \psi | \hat{p}_x | \psi \rangle = 0$.

b) Prove that the expectation value of \hat{p}_x^2 in a stationary state is positive, $\langle \psi | \hat{p}_x^2 | \psi \rangle > 0$.

Problem 2. (25 points) The Coulomb potential energy of an electron in a hydrogen atom is $V(r) = -e^2/4\pi\epsilon_0 r$, which becomes infinitely negative as $r \to 0$. What prevents the ground state energy from being infinitely negative? What happens to the ground state energy if atom contains a proton and a μ meson, the meson mass is $m_{\mu} \approx 206m_e$, m_e is the electron mass.

Problem 3. (40 points) A particle of mass m moves in a three dimensional isotropic potential of a harmonic oscillator, $V(\mathbf{r}) = m\omega^2 |\mathbf{r}|^2/2$ and is in a stationary state with energy $E = 5\hbar\omega/2$.

- a) How many eigen states corresponds to this energy E? Write down these states in terms of wave functions of one dimensional harmonic oscillator in a cartesian coordinates.
 - b) What is the average kinetic and potential energies in any of these eigen states?
 - c) What is the magnitude of the total angular momentum \hat{L}^2 for these states?
- d) Calculate the average rotational energy, $\langle \psi | \hat{L}^2/(2m|\mathbf{r}|^2) | \psi \rangle$ in any of these eigen states? Compare the result with the answer to question 3.b, explain the difference.

Problem 4. (40 points) The operators for spin 1/2 can be written as $\hat{S}_i = (\hbar/2)\hat{\sigma}_i$, with i = x, y, z and

$$\hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}; \quad \hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$

The hamiltonian for such a spin in a magnetic field B along y-axis is $\hat{H} = -\mu B \hat{S}_y$.

a) Give the eigenvalues and the normalized eigenstates of \hat{S}_z in the form

$$\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}. \tag{1}$$

- b) Calculate the expectation value of \hat{S}_y in an eigenstate of \hat{S}_z . Explain the result.
- c) Give the eigenvalues and the normalized eigenstates of \hat{S}_y in the form of Eq. (1). What are the eigenvalues and the eigenstates of the Hamiltonian \hat{H} ?
- d) For the given Hamiltonian, find the time-dependent wave function, if at t=0 the wave function had the form $\psi(t=0)=\begin{pmatrix}1\\0\end{pmatrix}$. Interpret the result.

see the second page!

Problem 5. (50 points) Consider the Jaynes-Cummings Hamiltonian, representing coupling between a harmonic oscillator and spin 1/2:

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a}^{-} + 1/2) + \hbar\Omega/2\hat{\sigma}_z + \lambda\left(\hat{a}^{\dagger}\hat{\sigma}_{-} + \hat{a}^{-}\hat{\sigma}_{+}\right),\tag{2}$$

where the 2×2 matrices $\hat{\sigma}_{\pm} = (\hat{\sigma}_x \pm i\hat{\sigma}_y)/2$, and $\hat{\sigma}_{x,y}$ are defined above, the operators \hat{a}^{\pm} are the raising and lowering operators of the harmonic oscillator.

- a) What are the eigenvalues and eigenstates of this Hamiltonian in the absence of interaction between the oscillator and the spin, i.e. $\lambda = 0$?
- b) Evaluate the expectation value of the full Hamiltonian with respect to eigenstates of non-interacting system.
- c) Calculate the first order perturbation correction to the eigenstates and eigenvalues of the Hamiltonian with interaction.
- d) Calculate the second order perturbation correction to the eigenvalues of the Hamiltonian with interaction.

Problem 6. (25 points) A particle of mass m moves in a one dimensional box with infinite potential walls,

$$V(x) = \begin{cases} 0, & |x| < a; \\ +\infty, & |x| \ge a. \end{cases}$$

- a) What are the eigenfunctions and eigenenergies?
- b) Can you apply the semiclassical approximation to answer question a)?
- c) Make a variational estimate of the ground state energy using the trial function

$$\psi(x) = A \begin{cases} (1 - x^2/a^2), & |x| < a; \\ 0, & \text{otherwise.} \end{cases}$$